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RESEARCH ACTIVITIES 

The objective of the research under this ONR award is to develop multisensor data fusion 
algorithms for tracking applications. We have addressed the estimation and data association 
process, where different measurement types must be integrated into one common estimation 
process, and consistent probability metrics must be established for all sensor types. We also 
investigated techniques to manage sensor information and sensor resources in multisensor 
systems. In developing various algorithms, we focused our work and results to be useful for 
Naval tracking and surveillance systems. 

Under this project, we have achieved results in several different areas: 

• Multisensor target tracking is often performed using a single processor to monitor sev- 
eral sensors (centralized fusion), but this method is demanding of both computational 
power and communication bandwidth. Distributed sensor fusion is a method of ad- 
dressing these limitations. However, the distributed sensor fusion problem is more 
complex due to the correlation of separate track estimates. We previously developed a 
method known as measurement reconstruction and showed that it addresses this cor- 
relation problem in a specific class of distributed architectures [1]. We have extended 
the measurement reconstruction approach to a more generalized architecture using two 
new algorithms [A]. Computational and communication requirements have been com- 
pared with centralized sensor fusion, and Monte Carlo simulation studies have been 
used to compare the performance of these and other algorithms. We have also investi- 
gated the robustness of our algorithms to modeling errors that can yield errors in the 
measurement reconstruction process. 

In distributed tracking, it is also of importance to determine when track loss has 
occurred at each processor so that bad estimates are not transmitted to other processors 
for use in forming updated target state estimates. We have explored a number of 
methods of determining the lifetimes of tracks of targets without knowledge of the 
actual states (as is the case in practice) and have compared the performance of these 
methods with track lifetimes determined using truth information (which is available in 
simulations) [I]. 

• Because Monte Carlo simulation evaluations of multisensor multitarget tracking algo- 
rithms are time consuming and expensive, we have developed two non-simulation tech- 
niques for comparing multisensor probabilistic data association filters (MSPDAF) [B]. 
While requiring only a fraction of the time for Monte Carlo simulation evaluation, 
the non-simulation techniques have been shown to accurately predict the performance 
of the MSPDAF in terms of RMS position error and track lifetime which has been 
observed in simulations. 

• We have investigated and compared the computational complexity and tracking per- 
formance of sequential and parallel implementations of the multisensor probabilistic 



data association algorithm [B]. Our studies indicate that the sequential implementa- 
tion is better on the average than the parallel implementation, in terms of both RMS 
position error and track lifetime metrics. We have further developed analytical results 
that show that the sequential implementation is exponentially more computationally 
efficient as the clutter density and number of sensors increase. These studies assumed 
that all sensors were of equal quality. 

We have also investigated how the order of processing sensors of unequal qualities in 
a sequential implementation affects tracking performance. Our results [G,J] indicate 
that when using two sensors of different qualities, processing the worse sensor first leads 
to lower RMS position errors. These results have been verified via Monte Carlo simu- 
lations as well as analytically using the multi-sensor extension of the Modified Riccati 
Equation which we developed in [B] to approximate steady-state estimate covariances, 
and hence RMS errors in the estimates. 

Through my involvement in this ONR program, my group has begun a collaboration 
with Professor Larry Ho at Harvard University. We will be continuing this particular 
line of research beyond the end of this ONR award, where we shall explore ordinal 
optimization techniques developed by Professor Ho's group to allow us to efficiently 
evaluate the best order for processing sensors when there are a large number of sensors 
of varying qualities. 

Using multiple sensors in surveillance systems allows the strengths of one sensor type 
to compensate for the weaknesses of another and further provides redundance, there- 
fore increasing system robustness. However, because of limited sensor resources and 
limited processing capabilities, only a subset of the sensors can be allocated to various 
targets at each time interval. We have developed several schemes for controlling sensor 
information. In order to keep the mathematics more tractable, we initially [C,L,M] as- 
sumed a centralized processing architecture, where the measurements from all sensors 
are sent to a global processor where the measurements are fused and used for estimating 
the states (position, velocity, etc.) of the objects in the surveillance region. We have 
developed three algorithms that maintain a target's state estimate covariance near a 
desired level without over-taxing the computational resources of a tracking system. We 
have also modeled and evaluated the effects that (inevitable) sensor request delays can 
have on performance [D,L]. We have further extended our sensor manager algorithms 
for decentralized multisensor systems, where we have developed two computationally 
efficient techniques that have low communication bandwidth requirements and allow 
sufficient nodal autonomy [E,F,N]. Finally, we have also developed sensor management 
techniques that incorporate models of the complex data association process so that 
more accurate predictions of the effects of the use of various sensors can be made [K]. 

We will be proceeding with our work on sensor management techniques after this 
ONR award ends. On this sub-project, we shall also work with Professor Larry Ho at 
Harvard, where we will be investigating efficient methods for implementing the sensor 
management algorithms we have developed. Moreover, we will work with Data Fusion 
Corporation in Northglenn, CO on extending these sensor management methods for 
sensors used in tracking ground targets (as opposed to air targets as has been generally 
assumed in this ONR project). 



COLLABORATION WITH INDUSTRY AND OTHER RESEARCHERS 

To ensure that our work is properly motivated and directed, we have interacted with indus- 
try as well as other research groups: 

• We have worked with Data Fusion Corporation (DFC) (Northglenn, CO) on sensor 
management issues. DFC is a small company which receives much of their funding 
from the Air Force (Wright Patterson). Our discussions with DFC have helped to 
motivate much of our work in developing techniques to manage the large quantities of 
sensor information that must be processed in military surveillance systems. 

• We have collaborated with Professor Larry Ho at Harvard University, investigating 
whether ordinal optimization and super-heuristic concepts can be incorporated in our 
development of multisensor fusion algorithms to make them or evaluations of them 
more computationally efficient. In particular, we have investigated the combination 
of ordinal optimization and super-heuristic techniques for developing efficient imple- 
mentations of our new sensor management algorithms [H]. I visited Professor Ho at 
Harvard in August 1998 as well as May 2000, and my group plans to host Professor 
Ho for a visit at the University of Colorado at Boulder within the next year. 

• We have also had a number of discussions with Professor Isaac Kaminer at the Naval 
Postgraduate School to collaborate in the development of sensor fusion algorithms 
when the measurements are nonlinear. We hosted a visit by Professor Kaminer to the 
University of Colorado at Boulder in December 1998, and we recently resolved some 
issues in the investigation of the nonlinear filtering problem that we are jointly tackling. 

• We have also had a series of discussions with Professor Jason Speyer at the University 
of California at Los Angeles which have lead to a number of ideas for applying some 
of his work on fault detection to our efforts in developing methods of determining the 
track lifetimes of targets without truth information [I]. 

• Finally, we have also had interactions with Professor Stuart Russell of the University 
of California at Berkeley to compare his recent work on developing a data association 
algorithm based on probabilistic reasoning with methods of data association that my 
group has developed as well as other methods that have been documented in the 
literature. I visited with Professor Russell briefly during a recent trip to San Francisco 
in May 2000. 

SUMMARY 

Our results have provided insight as to the relative performance of various multisensor fusion 
methods, and they have also provided a basis for assessing the tradeoffs between performance 
and computational and communication requirements when planning new sensor network 
architectures or communication link protocols. 

[1]  L. Y. Pao.   "A Measurement Reconstruction Approach for Distributed Multisensor 
Fusion," AIAA J. Guidance, Control, and Dynamics, 19(4): 842-847, July-Aug. 1996. 
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Alternatives to Monte-Carlo Simulation Evaluations of 
Two Multisensor Fusion Algorithms* 
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Abstract—Parallel and sequential multisensor extensions of the 
probabilistic data association filter for multitarget tracking in 
clutter are presented, and a non-simulation technique is de- 
veloped and used to compare tracking performance of the two 
algorithms in case of a single target. While requiring only a frac- 
tion of the time for Monte-Carlo simulation evaluation, the 
non-simulation technique is shown to accurately predict the 
average superior performance of the sequential implementation 
in terms of RMS position error and track lifetime which has 
been observed in simulations. © 1998 Elsevier Science Ltd. All 
rights reserved. 

1. INTRODUCTION 

The computational requirements and the perfor- 
mance of a parallel implementation of the Multi- 
sensor Joint Probabilistic Data Association 
(MSJPDA) Algorithm have been studied in Pao 
(1994). The fact that computational complexity for 
the parallel implementation grows exponentially 
with the number of sensors led to the search for 
other ways of implementing the MSJPDA algo- 
rithm that are less complex and still have compara- 
ble performance. A sequential implementation of 
the MSJPDA algorithm is presented in this paper 
and will be shown to only have linear growth in 
complexity with the number of sensors. While 
parallel and sequential implementations for pure 
Kaiman filtering (i.e. when no data association is 
required) are equivalent in terms of performance 
(Willner et al., 1976), this is not true for tracking in 
a cluttered environment. 

Due to the complexity of multisensor multitarget 
tracking algorithms, the performance of these 
algorithms  is  generally  compared  by   running 
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ference, June 1995, Seattle, USA and the 1996 IF AC World 
Congress, July 1996, San Francisco, U.S.A. This paper was 
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Kwakernaak. Corresponding author C. W. Frei. Tel. 0041 1632 
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tAutomatic Control Laboratory, Swiss Federal Institute of 
Technology (ETH), 8092 Zurich, Switzerland. The author was 
supported by grants form ABB Management AG, Baden, Swit- 
zerland and Landis & Gyr, Zug, Switzerland. 

JECE Department, University of Colorado at Boulder, Boul- 
der, CO 80309-0425, U.S.A. 

Monte-Carlo simulations. The stochastic nature of 
tracking algorithms requires numerous simulations 
to give a reliable comparison. Running these simu- 
lations is time-consuming and expensive and fur- 
thermore only provides comparison information 
for parameter sets that are considered in the simu- 
lations. It is thus desirable to develop more efficient 
methods of predicting the performance of tracking 
algorithms. In this paper, we derive an extension of 
the hybrid approximation of the covariance propa- 
gation (Li and Bar-Shalom, 1991) to multiple 
sensors. Using this approximation to compare 
tracking performance requires a fraction of the time 
that would be needed for Monte-Carlo simulations 
and is thus much more efficient while at the same 
time predicting the correct performance difference. 
While the two multisensor fusion algorithms apply 
to multiple targets, because of the intractability of 
extension for multiple targets, the approximation 
method is only derived for multisensor single-target 
scenarios. Nevertheless, looking at single-target 
scenarios still gives a good indication on how dif- 
ferent the two MSJPDA implementations perform. 

The paper is organized as follows. The multi- 
sensor multitarget tracking problem is defined in 
Section 2, and the parallel and sequential imple- 
mentations of the MSJPDA algorithm are pres- 
ented in Section 3. In Section 4, the non-simulation 
technique for comparing multisensor tracking algo- 
rithms is developed. In Section 5, this technique 
is used to compare the tracking performance of 
the parallel and sequential implementations of 
the MSJPDA for an example system. The non- 
simulation evaluation results are compared with 
actual Monte-Carlo simulation results, and the 
computational complexity of the parallel and se- 
quential implementations is also analyzed. Finally, 
concluding remarks are given in Section 6. 

2. MULTISENSOR MULTITARGET TRACKING 

The multisensor multitarget tracking problem is 
to track T targets in clutter with Ns sensors. 
Measurements (also called reports or returns) from 
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the sensors are received by a central processor at 
discrete-time intervals. The data from the different 
sensors are assumed to be received synchronously; 
the algorithms to be discussed can be applied to 
asynchronous measurements by simply propagat- 
ing the measurements to a common time. Each 
measurement can originate from at most one tar- 
get. Some sensors may not provide measurements 
at every interval. Some of the measurements arise 
from targets, and some arise from clutter; some 
targets may not yield any measurements at all in 
a particular time interval or for a particular sensor. 
The probability of detection is assumed to be con- 
stant across targets for a given sensor i and will be 
denoted by Pl

D. Measurement errors due to 
measurements from one sensor are assumed to be 
independent of those from another sensor. 

Let x'(k) (1 < t < T) denote the state vectors of 
each target t at the fcth time interval. Suppose the 
target dynamics are determined by known matrices 
F'(fc) and G'(/c) and random noise vectors w'(fc) as 
follows: 

x'(/c + 1) = F'(k) x'(k) + G'(k) W(k), 

where t = 1, ...,T. The noise vectors w'(/c) are 
stochastically independent Gaussian random vari- 
ables with zero mean and known covariance ma- 
trices Q'(k). 

With Ns sensors, let Mi, i = 1, 2, ..., Ns, be the 
number of reports from each sensor;' at the kih time 
interval. Assuming a pre-correlation gating process 
is used to eliminate some of the returns (Bar- 
Shalom and Fortmann, 1988), let mi denote the 
number of validated returns from sensor i at time k. 
The volume of that gate at time k, i, is chosen such 
that with probability P'a the target originated 
measurements, if there are any, fall into the gate of 
sensor i. The target originated measurements are 
determined by 

<ii(/c) = Hi(fc)x'(fe) + v!(/c), 

where t = 1, ... ,T,i= 1, ..., Ns, and 1 < /,- < Mj. 
The Hj(fc) matrices are known, each vj(fc) is a zero- 
mean Gaussian noise vector uncorrelated with all 
other noise vectors, and the covariance matrices 
R;(/c) of the noise vectors v'(Jc) are known. For 
a given target t and sensor i, it is not known which 
measurement /,- (1 < /,- < Mk) originates from the 
target. That is the problem of data association 
whereby it is necessary to determine which 
measurements originate from which targets [see 
Bar-Shalom and Fortmann (1988) for more back- 
ground]. In any time interval, it is assumed that 
a target can give rise to at most one measurement 
from a particular sensor. Measurements not origin- 
ating from targets are known as false measure- 
ments (i.e., clutter), and false measurements are 
assumed to be uniformly distributed throughout 

the surveillance region with a density of X. The 
number of gated false measurements is therefore 
usually modeled by a Poisson distribution, that is, 
lit (mi) is given by 

'1 _ t>-wk li^mi) = e {Wl)mi 

mil   • 

Let ^f(fc) denote the set of gated measurements at 
time k: 

#(*) = Kl(*X -,zwW,z2,i(/c), 

••• . Z2,mi(k),  ... , ZN„#),   ••• , ZNi,m?.(fc)). 

The t superscripts are not indicated, since it is not 
known which measurements originate from which 
target. Finally, let 2£k denote the sequence of the 
first k observations, i.e. 2£k = (JT(1), ..., JT(fc)). 

3. MULTISENSOR JPDA (MSJPDA) 

3.1. Single sensor JPDA 
For single-sensor tracking, Ns = 1 and the goal is 

to associate the T targets with the ml measure- 
ments based on the current target state estimates 
and to update these estimates. The actual associ- 
ation being unknown, the conditional estimate is 
determined by taking a weighted average over 
all possible associations. For 1 < t < T and 
0 < / < ml, let ß'i(k) denote the conditional prob- 
ability that measurement / is the true measurement 
from target t given 2£k. The conditional estimate 
x\k\k) for x'(/c) given Jf* is (Bar-Shalom and For- 
tmann, 1988) 

mk 

x'(/c|/c)= £j8{(A:)*j(*|A;), 
( = 0 

where x\(k\k) is the estimate of x'(k\k) given by the 
Kaiman filter on the basis of the previous estimate 
and the association of the tth target with the /th 

measurement. 

3.2. Parallel MSJPDA 
In the parallel implementation of the MSJPDA 

algorithm (Pao, 1994), all the measurements from 
all Ns sensors are taken into account in one pass 
through the multisensor data association and filter- 
ing routines (see Fig. 1). For multisensor tracking, 
the T targets now have to be associated with 
the m'k measurements for each of the Ns sensors. 
For 1 < t < T and S£ = (lu l2, ..., lN) where 
0 < lx < ml, ...,0<lNt< m%', let ß'#{k) denote 
the conditional probability of the event that if is 
the true set of measurements from the Ns sensors 
for the fcth observation given 2£k, which is com- 
puted as 

ß'Ak)=hßlM 
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Fig.    1. Parallel   implementation   of   multisensor   tracking 
algorithm. 
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Fig.  2. Sequential  implementation  of multisensor  tracking 
algorithm. 

where the ß\„i(k) are just the single-sensor event 
probabilities described above. The conditional 
estimates x'(rc|fc) for the MSJPDA algorithm are 
given by 

x'(k\k) = Yß'Ak)x'Ak\k), 

where the sum is over all sets of associations 
Z£ with target t. The estimate x'^(k\k) of x'(k) is 
based on the prediction x'(k\k — 1) and the associ- 
ation of the £th target with the set of ££ returns from 
the Ns sensors. The covariance update correspond- 
ing to x'y(k\k) is computed by 

P'(k\k) = ZPAQLKW) + x'Ak\k) x'Ak\k)T2 

- x\k\k) x'(k\k)T, 

where Pj>(rc|/c) are covariances corresponding to 
x'Ak\k). 

3.3. Sequential MSJPDA 
Another way of implementing the MSJPDA al- 

gorithm is to process the measurements from each 
sensor one sensor at the time, as shown in Fig. 2. 
The measurements of a first sensor are used to 
compute an intermediate state estimate x\(k\k) and 
the corresponding covariance Pi(fc|fc) for each tar- 
get. The performed computation is equivalent to 
the one described for the single-sensor case (Section 
3.1). The measurements of the next sensor are then 
used to further improve this intermediate state esti- 
mate, again using the single-sensor JPDA filter. 
With x'i(k\k) and P|(fc|rc) as the state estimate and 
covariance, respectively, after processing the data 
of the i'h sensor, the update equations are 

x;<fc|/c) = x!_1(/c|fc) +K\(k)fjß'll,l{k) 
z,=o 

x [z|,(/c) - H,(fc)*!-!(*!*)],  i = 1, ... , Ns, 

where x'0{k\k) = x'{k\k - 1) and x'N{k\k) = x\k\k). 
With P'0(k\k) = P'(Jt|jfc - 1) and P'4k\k) = P\k\k), 
the update of the covariance matrices is 

r,(k\k) = ß'odW-Mk) + [i - /u*)] 

x[I-K'(/c)Hj(/c)]P.-i(/c|k) 
mi 

+ KM 'HAT E ßUQziwzKk) 

- x ßuktiß) Y ßumm1 KK/C)
T

, 

i=l,...,Ns. 

4. MULTISENSOR HYBRID COVARIANCE 
APPROXIMATION 

By extending the hybrid approximation of the 
covariance propagation proposed in Li and Bar- 
Shalom (1991) to multiple sensors, a non-simula- 
tion comparison of the sequential and parallel 
implementations of the multisensor probabilistic 
data association filter (MSPDAF) in terms of the 
average RMS position (or any other) error and 
expected track lifetime can be made. Because of the 
difficulty of taking into account the probability of 
interfering targets, these hybrid approximations 
have not been extended to multiple targets. The 
essence of the extension to multiple sensors is 
that the approximation of the expected error co- 
variance matrix E{P(k\k)\£?k} is conditioned 
on the number of validated measurements from 
all Ns sensors. The covariance approximation 
matrices P{k\k, ml, ...,m^*) and joint probabilities 
P{ml, ...,m%'} are computed at each time step. The 
expected RMS position error can be obtained by 
iterating the approximation to steady state. 
Extracting the conditioned position RMS 
e(oo, mlo, ml,, ..., mNJ) from the steady-state matrix 
P(oo, mJo, m2

m ... ,mN^) and averaging over all 
steady-state probabilities ^{m1^, ... ,m%} gives the 
average RMS position error: 

e(co)=   X   ■ 
ml =0 

JVT 

•   £ e(co, mi, mi, ... ,m%) 

where the truncation at NT of the otherwise infinite 
sums is chosen such the resulting approximation 
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error is small. Information about the expected 
track lifetime can be obtained through the prob- 
ability of track loss. Extending the definition given 
for the probability of track loss for single target 
tracking (Li and Bar-Shalom, 1991), the probability 
of track loss at time k when there are multiple 
sensors is defined as the probability that the num- 
ber of measurements validated for any of the 
Ns sensors exceeds a certain threshold Ntl at time 
k given that the target was not lost at time k — 1: 

Pü(k)M -N
'Y!-"Z^{W, ■ • •, «?■}, (2) 

mi=0 m?- 

where P*{ml, ... ,mk'} denotes the probability that 
a track is lost at time k given that the track was not 
lost at time k — l. The cumulative probability of 
track loss for evaluation of track lifetime is defined 
(Li and Bar-Shalom, 1991) as 

*    /N„-l        W.i-1 

jv^i-n z - z p*w,...,<•} 
i=l\m,»=0        m1'=0 

= PTL(fc - 1) + [1 - PTL(fc - l)]Ptl(/c)     (3) 

and a track is deemed lost if PjL(k) exceeds a certain 
limit Plost. JVT, A/,,, and Plost in equations (l)-{3) are 
tuning parameters, and some guidelines for choos- 
ing them are given in Frei (1995). In the next two 
sections, the hybrid approximation procedure is 
detailed for N3 = 2 only to simplify the illustration 
of the method. The derivation for these multisensor 
extensions can be found in Frei (1995). 

4.1. The hybrid approximation for the parallel 
MSPDAF 

Starting with the conditional covariance approx- 
imation P(k — l\k — 1, ffit-i, tni-i) and the 
joint probabilities P{ml-1,ml-1}, the one-step 
prediction is 

S,(/c, ntjj-i, mk-1) 

= H,(fc)P(/c|/c - 1, ml
k-u ml-l)Ui(k)r 

+ Ri(fe), 

Ki(fc,m*-i,mik-i) 

P{k\k-\,ml-uml-{)-1 

+ XHrwR^) "'Hit*)!  ' 

xHftQRrffc)-1. (4) 

The approximation of £{P(fc|fe)} conditioned on the 
number of validated measurements at the current 
time k and the previous time fe — 1 is then 

PiklKm^m^ml-un^-!) 

= ßo,ißo,2P(k\k-l,mi
k-1,ml-i) 

+ ßo. i [1 - ßo,2]Pi(k\k, mt- u ml-,) 

+ 0o,2 [1 - ßo.ilPi(k\k,ml-umLi) 

+ [1 - Ä>.l][l - j8o,2]P2Sensors(fc|fc, WI^j, ffl^_ J 

2 

+ Z ["i(mt> »»*-1. ml- I) - "2(wL mi-u ™it-1)] 
i=l 

x Ki(k, mi- umi-i) St(k, mi-u ml-t) 

xKi(fc,mfc
1_1,m£_1)T, (5) 

where 

ßo.i = ßo.i(k, mi, mi-1, ml-x) 

(I-P'OP'G) XV^Kmi-uml-,) 
(1 - PbPb) Wt(k, mi-1; ml- i) + FDP'Gmk 

(6) 

"i(»4, W-1, ml- 0 = i>D 
.   .   kV:(k,mi-,,ml-A       ,, 

(1 - Pi>Pb) , + PbPb mk 

mi = 0, 

h,    m[ > 0. (7) 

u2(mk, mi-1, ml- 0 = ■ 

0, 
P'D 

(2K) M/2 

.   .   kV:(k,mi-1,ml-1)     „,.    . 
(1 - PbPb) ,- + *VG 

»4 = 0, 

/i,    mi > 0. 

= Ffjfc - l)P(fc - l|ft - 1, mi-u ml-i) F(k - 1)T 

+ G{k - 1) Q(fe - 1) G(k - 1)T, 

(8) 

Vi(k, ml-i, ml- x) denotes the volume of the valida- 
tion gate of sensor i at time k given that there were 
mi-1 and ml-i measurements validated at time 
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fc-1: 

Vi(-) = cMgM\Si(-)\
1'2,   i = l,2. 

M denotes the dimension of the measurement 
space, cM denotes the volume of the M-dimensional 
unit sphere, and g is a parameter determining 
the size of the validation gate. P2sensors() is the 
covariance for pure Kaiman filtering with two 
sensors. Pi( •) and P2( •) denote the covariance ma- 
trices obtained if for either sensor (2 and 1, respec- 
tively) no return is associated with the target. 
Finally, the integrals It and J2 are 

j1= jV
+1e-'2/2d/-, 

h{mk) ~ Jo -Jo      H-ir-ie-*2      dri "*+ 

b = (2</2 (kVi{K w*- u ml~l] ^(1 " P<DP,O) 

CM0 Pb 

The integrals Jx and /2(wl) can be computed 
numerically. Jt is usually constant for a particular 
application, assuming a constant validation 
probability and I2(mk) can be interpolated 
from a table of I2(mk) values that are computed off 
line. 

The forward transition probabilities are 

With (5) and (10), the approximation P{k\k, ml, ml) 
can be computed as 

P(k\k, ml, ml) 

CO CO 

=  X   £ P(fcl*.m* >m*»w*1-1»w* -1) 
m,'., = 0 mf_, 

x-PW-i»m*-iN*,»it}. (11) 

Iterating equations (4), (5), and (11) to steady-state 
yields P( oo, mi, m%). 

4.2. The hybrid approximation for the sequential 
MSPDAF 

Starting with the conditional covariance ap- 
proximation P(k- l\k- I,ml-u ml-,) and the 
joint probabilities P{ml-Uml-,}, P(fc|fc-1, 
Wfc-i, mf-i) and Si(k, ml-15 ml-t) are computed 
according to equation (4) and the filter gain is 

K,(k,ml-uml-t) = P(k\k - 1,ml-um2_t) 

xHlWS^iKml-uml-J. 

The intermediate approximation of the covariance, 
conditioned on the measurements from both sen- 
sors of the previous time k — 1 and the measure- 
ments of the first sensor at current time k, is a 
function of the number of gated measurements 

-P{»J*|Wfc-l,»l2-l} 
(1 - Pi

DP
i
G)nF(ml\ml-.1,ml-1), mi = 0, 

(1 - PhP'oin^milml-1; ml- J + P|,PbM>"£ - 1 \ml-u ml-1),   ml
k > 0, (9) 

where the distribution of false measurements ^F is 
determined by a Poisson model assumption. The 
joint forward probabilities can be obtained from 
them as 

Pimlm^ml-^ml-x} 

= P{ml \ml- x, ml-^Pimllml-u ml- J. 

Finally, the marginal probabilities are computed 
from the joint probabilities as 

P{mk,mk} — 

00 O0 

£       £   P{ml,ml\ml-uml-l}P{ml-l,ml-l}. 

Using Bayes' rule to obtain the backward 
transition probabilities gives 

Piml-uml-^mlml} 

_ P{ml, ml\ml-1, ml-^Pjml-1, ml- J 
P{ml,ml} (10) 

from the previous time (ml- x and ml-t) and of the 
number of measurements gated by the first sensor 
at the current time (ml). It is also the conditional 
covariance prediction for the second sensor: 

P^k^miml-uml-t) 

= P(fc|fc-l,m*1_1,m2_1) 

- [1 - ßo, l - "i(W, ml-1; ml- j) 

+ u2(ml, ml-1, ml- JIK^k, ml- u ml-t) 

x Si(fe, ml-1; ml- i) K^k, ml- u ml- ^ 

where ß0A, uu and u2 are computed according to 
equations (6), (7), and (8), respectively. The innova- 
tions covariance and the filter gain for the second 
sensor are thus 

S2(k,ml,ml-1,ml-1) 

= H#) P#|fc, ml, ml- u ml-1) H2(fe)T + R2(k), 

Kiikmlml-uml-i) 

= P1(k\k,ml,ml-l,ml-1) 

xHKkfö^mlml-^ml-J 
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Table 1. Approximate operation counts for parallel and sequential MSJPDA 

Procedure Parallel MSJPDA Sequential MSJPDA 

Gating 
O(TST,£ MisA ßh-s^MisA 

Likelihood ßfrimisf) ßfr^misA 

Association probabilities 
ß{T2T-ltmi(mi-l)j ß\T2'r-1tmi

k(mi-\)\ 

State estimates 
ß(r£mis-) ßhrtmisA 

State covariances 
ß(TsT,2«. + T£misf) ß(T£m'ks?) 

\                  i=i        / \  i=i       / 

and the approximation of E{P(k\k)} conditioned 
on the number of gated measurements in both 
sensors at time k — 1 and time k is now a function 
of the number of all the validated measurements at 
the previous time {ml-1 and ml_ t) and the current 
time (ml and ml): 

V(k\k, ml, ml, ml-15 ml- J 

= Vl(k\k,ml,ml-l,ml-l) 

-[1 ~ ßo,2-ui(ml, ml, ml-u ml-1) 

+ u2(ml, ml, ml- u ml-1)] 

x K2(/c, ml, ml- u ml- j)S2(fc, ml, ml-u ml-t) 

xK2(fc,mlt
1,ml£-1,mf_1)T (12) 

where again equations (6), (7), and (8) apply for the 
computation of/J0,2> "i, and u2 with the appropri- 
ate modifications. 

The forward transition probabilities for the first 
sensor P{ml\ml- u mf _ i} and for the second sensor 
P{ml\ml, ml-u ml-i] are (with the appropriate 
conditioning for sensor two) both computed ac- 
cording to (9). The joint forward transition prob- 
abilities can then be computed as 

P{ml, mllml-i, m^.J 

= P{ml\ml-!, ml-i}P{ml\ml, ml-1; m£_ t}. 
(13) 

Computing the remaining (backward transition 
and marginal) probabilities follows the same pro- 
cedure as for the parallel hybrid approximation, 
and the approximation P(k\k, ml, ml) can then also 
be computed according to (11). 

5. COMPARISON 

5.1. Comparisons of computational complexity 
If tracking algorithms are supposed to track in 

real time, the computational requirements play an 
important role as one observation interval provides 

very limited time to perform the filtering computa- 
tions. The computational complexity becomes es- 
pecially important as the number of sensors and the 
clutter density grow. 

Table 1 shows the order of operation counts for 
the various parts of the parallel and the sequential 
implementations of the MSJPDA algorithm. An 
addition/subtraction and multiplication/division 
are counted as one operation. The variable sT de- 
notes the number of elements in the target state 
vector and s; denotes the size of the measurement 
vector of the ith sensor. Details illustrating how 
these approximate computational complexity ex- 
pressions are computed are provided in Frei (1995). 

We see that the computational complexity 
of both algorithms is equivalent except in the 
covariance update routines. It can be seen that the 
complexity of the parallel implementation grows 
exponentially with the number of sensors while the 
complexity of the sequential implementation only 
shows linear growth with the number of sensors. 

5.2. Comparison of tracking performance 
In this section, the multisensor hybrid approxima- 
tion will be applied to a particular sample system 
defined in Pao (1994), and the results are compared 
with simulations for the same system. The simula- 
tions were run for tracking two targets moving in 
two dimensions with random acceleration and 
measurement noise. The clutter density X was var- 
ied from 0.2 to 1.0. For the simulation parameters, 
the expected number of false measurements per 
validation region, using steady-state Kaiman filter 
covariances, varies from 0.38 to 1.92. 

Figure 3 shows the average track lifetimes for 
parallel and sequential implementations of the al- 
gorithm as the clutter density is varied. Both simu- 
lation and non-simulation results are shown in the 
figure. As expected, the average track lifetime 
decreases as the clutter density increases. The simu- 
lations show the same trend in the relative perfor- 
mance, but they do not yield the same values for the 
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Fig.   3. Variation   of  track   lifetime   with   clutter   density   X.   Parameters:   Q1 = Q2 = Rj = R2 = diag(0.0144,0.0144),   Pl
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average track lifetime because track lifetime was 
defined differently for the simulations and for the 
multisensor hybrid approximation. Clearly, the 
sequential implementation yields longer track 
lifetimes over the whole range of clutter density 
values. 

Figure 4 presents similar results for the average 
RMS position errors. The values obtained through 
approximation methods are shown together with 
simulations results on the same plot. Multisensor 
extensions (Frei, 1995) of the modified Riccati 
equation (MRE) (Bar-Shalom and Fortmann, 1988) 
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are also capable of providing predictions for aver- 
age RMS errors but not for average track lifetimes 
and has therefore not been discussed in this paper. 
With the RMS position error being defined in the 
same manner for simulations and approximations, 
there is a good match of the RMS predictions with 
the simulation results. As expected, RMS position 
errors increase as the clutter density increases. Fur- 
ther, sequential filtering yields lower RMS position 
error, as predicted by the hybrid approximation. 

6. DISCUSSION AND CONCLUSIONS 

A non-simulation technique for comparing 
single-sensor tracking algorithms, the hybrid ap- 
proximation of the covariance propagation, has 
been extended for comparing parallel and sequen- 
tial implementations of the multisensor probabilis- 
tic data association filter. The method allows 
comparison in terms of both RMS position error 
and track lifetime. While this technique does not 
predict the performance of either implementation 
exactly in all cases, it has been shown to always 
correctly predict the qualitative performance differ- 
ences between the two implementations observed 
in simulations. Even though the hybrid approxima- 
tions gives the right predictions for the qualitative 
performance difference between the parallel and the 
sequential implementations for all parameter sets 
studied, a more systematic comparison of predic- 
tions and simulations should be done to validate 
the use of the developed approximations, with 
parameter sets chosen to represent all possible ex- 
treme situations. 

Based on our approximations and simulations, 
a superior performance (in terms of RMS position 
error and track lifetime metrics) of the sequential 
implementation of the MSJPDA over the parallel 
implementation has been shown. The sequential 
implementation has also been shown to be less 
computationally complex than the parallel imple- 
mentation. 

For the sequential implementation, a question 
that  arises  is  which  sensor's  data  should  be 

processed first if the sensors do not possess equal 
characteristics. Our studies with two unequal sen- 
sors show that processing measurements from the 
better sensor first leads to longer expected track 
lifetimes but larger expected RMS position errors; 
more details can be found in Frei (1995). 

A heuristic explanation on why the sequential 
implementation yields superior tracking perfor- 
mance is as follows. The parallel implementation 
uses the predicted measurements and covariances 
based on the state estimates and covariances of the 
previous interval for data association and filtering 
of measurements from all sensors in the current 
interval, whereas the sequential implementation 
only uses this information for data association and 
filtering of measurements for the first sensor. After 
processing data from this first sensor, better esti- 
mates are available which are then used for data 
association and filtering of measurements from the 
next sensor. Thus, successively better estimates 
are used for data association and filtering for 
each subsequent sensor, in that (i) unlikely 
measurements which are considered for the parallel 
filtering might be rejected for the sequential filter- 
ing and (ii) different (probably better) association 
probabilities are obtained. 
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Abstract 
Multi-sensor target tracking has traditionally been 

performed using a single processor to monitor several sen- 
sors (centralized fusion), but this method is demanding 
of both computational power and communication band- 
width. Distributed sensor fusion is a method of addressing 
these limitations. However, the distributed sensor fusion 
problem is more complex due to the correlation of separate 
track estimates. A method known as measurement recon- 
struction has recently been shown to address this problem 
in a specific architecture. This paper extends the mea- 
surement reconstruction approach to a more generalized 
architecture using two new algorithms. Computational 
and communication requirements are compared with cen- 
tralized sensor fusion, and Monte Carlo simulation studies 
are used to compare the performance of these algorithms. 

1. Introduction 
Target tracking in various environments presents sev- 

eral challenges including noise, target clutter, and multi- 
ple, interacting targets. The Kaiman filter is an optimal 
solution to dealing with noise both in the sensor as well 
as in the target (assuming linear motion in the target). 
The Joint Probabilistic Data Association (JPDA) filter 
has proven to be very effective in dealing with clutter and 
multiple targets by combining the measurements into a 
single weighted average for each of the targets [2]. The 
use of multiple sensors has improved the performance of 
these algorithms. However, the cost of this improvement 
is a dramatic increase in computational complexity. The 
number of computations increases exponentially with the 
number of sensors and targets and quadratically with the 
number of measurements [7, 9]. A sequential implementa- 
tion of the JPDA/Kalman filter can yield superior perfor- 
mance over a parallel implementation while limiting the 
computational complexity due to the number of sensors 
to linear growth [6, 9]. Because of this, we will use only 
the sequential JPDA Kaiman filter as a basis of our dis- 
tributed fusion techniques. 

Another method of reducing the computational load is 
to spread the work over several processors in a technique 
known as distributed sensor fusion.   Distributed fusion 

has the advantage of not only decreasing the demand on 
the processor, but increasing the resistance of the traclq» 
system to damage. The system will be able tolose apJ 
cessor and continue to track targets. The disadvantajh. 
include the loss of information to the global processor ay 
the cross-correlation of the track estimates [1, 3]. 

Previous studies in distributed tracking have co^ 
ered specific local and global algorithms and specific p^ 
cessing architectures and communication schemes [4t * 
In [8], a technique known as measurement reconstruct^ 
was presented that can be used with a variety of trackin, 
algorithms and is an effective method of reducing com. 
putational complexity, especially in high clutter environ. 
ments. This paper expands measurement reconstruction 
techniques for a more general class of distributed architec. 
tures. A brief review of both the sequential Kaiman filter 
and JPDA algorithms is given in section 2. General in. 
formation on distributed architectures and measurement ■ 
reconstruction to date is presented in section 3, and aj. ; 
gorithms for a more general architecture are presented in 
sections 3.1 and 3.2. The computational complexity of the 
algorithms is examined in section 4, and simulation results 
are presented in section 5. Finally, concluding remarks ate 
given in section 6. 

2. Sequential Kaiman and JPDA Filtering 
The sequential Kaiman filter is an algorithm for es- 

timating stochastic or slightly non-linear systems using a 
state space representation. The Kaiman filter is based on 
the following assumptions about the target and measure- 
ment systems: 

«*(*)   =   J**'(*-1)+G*u'(*-1)+?'(*-1)0) 
zj(Jb)   =   HjatW + wjik) (2) 

where xt(k) is the current state estimate of target t; P, 
Gl, Hj are known system matrices; u*(fc) is the control 
signal; and zUk) is a measurement of target t from sen- 
sor j. ql{k) is a variable representing process noise or 
higher-order motion, and Wj(k) is a variable represent^ 
measurement noise or error. Both ql{k) and Wj[k) ait , 
assumed to have zero-mean, white, Gaussian probability ; 
distributions. 
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the target states ana measuremeuLB m wt -.—  
teval cau be predicted by: 

j«(fc|fc_l)   =   F*Ä*(fc-l|Jb-l)+G*u'(fc-l) (3) 

ij.(fc)   =   Hjx'iklk-l) (4) 

The input u(fc) is considered known and will be omitted in 
fame equations because it can be easily reinserted. The 
qaantity vUk) = zUk) - zj(fc) is known as the innovation. 
The predicted «»variance of the state and innovation can 
be found by: 

rtklk-l)   =   FtPt{k-l\k-l)(Ft)' + Qt{k-l) 
(5) 

S}(k+l|ib)   =   HjP(k + \\k)H'j + Rj{k) (6) 

where Q'(fc) and Rj{k) are the (»variances of the noise in 
the plant and the sensor, respectively. 

The sequential algorithm runs a separate Kaiman fil- 
ter for each sensor [10]: 

xt{k\k-l)+Kt
1(k){z{(k) 

-J5Ti**(fc | * -1» 
x5._x(fc|fe)+^(fc)(4(fc) 
-flif5_x(*|fc)).    i = 2> 
*?*.(* I*) 

I 
that the target was not detected during scan K, in wmui 
case Zm j(fc) = z4(fe)- The combined measurement is then 
used in the Kaiman Filter to compute the state covariance 

s\{k\ky 

a*{k\k) 

x^k | Jfc) 

where 

K[(k)   =   Pt{k\k-l)H'lR^l{k) 
K](k)   =   Pj_l{k\h)H'iBjl{k),     i = 2,...,JV. 

Tie state covariance is updated for each filter by: 

(7) 

.,N. (8) 

.   0) 

(10) 

(11) 

(12) Pf(Jfe|fc)   =   {I-K*l{k)Hl)P
t{k\k-l) 

Pj{k\k)   =    (I-ÄJ(*)fli)i$-i(*l*)» 
i = 2 JV. (13) 

P*(*|Jb)   =   P}f.{k\k) (I4) 

°nce the state and covariance estimates have been up- 
dated, they are fed back into the algorithm and the entire 
Process is repeated for the new set of measurements at the 
oext time step. 

In the JPDA filter [2], the measurement in the Kaiman 
after is replaced by the combined measurement — a sum 
of the measurements, each weighted by the probability of 
tl>at measurement being the actual return from the target: 

m=0 

"here zm,j(fc) is measurement m of sensor j at time k, 
^mj{k) is the probability that measurement zm<i(k) is the 
tfue measurement of target t, and mt is the number of 

as 
p*(*l*) = &AQPt{k\k-i) 

+(i-/3S,i(fc))^(*lfc) + ^(fc)(16) 
pO(fc) = (/-Ä5(fc)fl»p*(*|fc-i) 

£jM*)«u(*Ki(*) 
t=i 

-«(fcy(fc)]W(*) 
All other quantities in the Kaiman FUter are calculated 
as discussed above. 

3. Distributed Fusion 
In distributed sensor fusion, several microprocessors 

monitor the sensor outputs instead of only one. Usually 
the sensors themselves will be divided among several pro- 
cessors (known as local processors). Each local processor 
runs its own sensor fusion algorithm and passes its esti- 
mates of the targets along with any other necessary infor- 
mation to the global processor. The global processor takes 
the local estimates from each processor and computes its 
own target state estimates based on this information. 

The estimates from different local processors for a 
given target are biased since each processor is affected 
by the same target process noise. Because of this, the 
state estimates are no longer normally distributed and 
most of the assumptions made by the Kaiman and JPDA 
algorithms no longer hold. Calculations to take this 
cross-correlation into account are complicated enough to 
negate most of the gains in computational efficiency made 
by moving to a distributed architecture [1, 3, 4J. One 
method of dealing with this problem is known as pseudo- 
measurement reconstruction, where the original measure- 
ments or combined measurements are extracted from the 
state estimates of the local processors [8]. Since the mea- 
surement errors are independent across the sensors, the 
pseudo-measurements will also be uncorrelated. 

There are various distributed fusion architectures. Ir 
[81 the measurement reconstruction approach was devel- 
oped and demonstrated on an architecture where jaci 
local processor monitors one sensor and transmits in 
formation to a global processor. Each local processo 
may be tracking different targets or following false tracks 
Measurement reconstruction simply involves solving th 
Kaiman filter equation for the measurement quantity 

**(*)   =   (Kt(k))Hi\(k\k)-x\{k\k-l)) 
+Hix\(k\k-l) (!' 
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where i is the processor number and (*?(*))** JJ"8 

pSo-inverse of Xj(*>. In the case of JPDA, Jf<*>* the 
combined measurement used by processor t to arrive at 
the local estimate of target fc This reconstruction process 
is performed for each sensor and requires each of: the jv. 
processors to transmit its set of state estimates x«(k I *) 
Ld Kaiman filter gains Kj(fc) to the global processor. 
The Fl and Ht matrices are assumed to be known by the 
global processor and xf (fc | fc - 1) can be calculated using 
F1 and the previous state estimate. 

Once the pseudo-measurements are recovered, they 
can be fused at the central processor the same way as 
normal measurements would be, except that each pseudo- 

' measurement represents a target - the clutter points have 
essentially been eliminated by the local processors. Note 
that since each processor is following its own targets the 
central processor may apply the pseudo-measurement of 
the local processor's target to a completely different tar- 

^Figure 1 shows a more general distributed architec- 
ture where each local processor monitors several sensors, 
and we shall extend the measurement reconstruction ap- 
proach'for this architecture. Measurement reconstruction 
for the architecture of Figure 1 is not as straightforward 
as in [81. In particular, the state estimate from a local pro- 
cessor is now produced by measurements from more than 
one sensor, each one with a different Kaiman filter gain 
matrix. Making the task more difficult is the fact that the 
sequential multi-sensor Kaiman filter algorithm results in 
a combination of measurements that is much more compli- 
cated than simply creating a sum of pseudo-measurements 
weighted by multi-sensor Kaiman filter gains (this would 
be the case in a parallel implementation) [9]. The follow- 
ing two subsections present two techniques for extending 
measurement reconstruction for the more general archi- 
tecture of Figure 1. 

3 1   Individual Estimate Reconstruction 
* One reconstruction method for the distributed archi- 

tecture in Figure 1 is to use a simple modification of the 
reconstruction technique in [8]: 

External Environment 

Local Tracks 

Measurement 
Reconstruction 

Global 
Processor 

I Pseudo-measurements 

Fusion 
I    Global Tracks 

S = Sensor P = Local Processor 

iJiW  =   (KixWr1^^!*)-^*!*-1« 
+HlX\(k I fc - 1) (18) 

*fi(fc) = (i^(*)rVu<fc i *)-**«-!<* i *» 
+fljÄjJ.1(fc|*),  J=2,...,tf.       as) 

where i is the number of the local processor, j is the num- 
ber of the sensor of that processor and JV„ is the total 
number of sensors for processor i. With this Individual 
Estimate Reconstruction, it is possible to reconstruct the 
combined measurement for each sensor using the state es- 
timates and Kaiman gain matrices generated for each sen- 
sor (see equations (7)-(ll)). 

Figure 1: Distributed Sensor Fusion Architecture. 

3 2. Combined Estimate Reconstruction 
' While Individual Estimate Reconstruction is an effec- 

tive method of measurement reconstruction, it is possible 
to reduce the amount of data transmitted to the global 
processor, and hence the amount of bandwidth required 
by the system. The following Combined Estimate R* 
construction requires transmitting only the local state es- 
timates formed by each processor and the Kaiman filter 
gains from each sensor. 

Since each of the local state estimates is generated 
using only the previous estimates and the new measure- 
ments, it should be possible to extract the individual com- 
ponents of the sequential Kaiman algorithm. The state 
estimate at the end of the sequential Kaiman filter algo- 
rithm can be expressed as 

*'(fci*) = n(i-tf(w)*'(fci*-i) 
i=i 

+ £* Ö (J-*;(*)'#;WW 
+Xfc(*)4r.(*> (20) 

Co(*)Ä'(k|k-l) 

+ f^Ct
j{k)Kt

j{k)zt
j{k) (21) 

where C){k) is defined as 

<&.(*> = ' t x     
(22) 

C'Ak)   =   Cj+1(*)(I-Ä5+i(*)fii+i). 
; = 1,...,JV.-1 (23) 

C'(fc)   =   C{(k)(J-.K!(fc)*i) (24> 
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By moving the state estimates and measurements to op- 
posite sides of the equation, we obtain 
N. 

£3(fc)Äl(fc)zj(*)   =   *'(*|*)-C<(*)s<(Jfe|Jfc-l) 

(25) 

Pre-multiplying both sides of the equation by 
(EjJi C${k)Kt(k)) creates, on the left-hand side, a sum 
of weighted measurements where the weights sum to one 
and that represent the effect each measurement has on the 
algorithm: 

iw(*)  =  £*£*(*)<*(*) 

computational complexities, we replace the dimension of 
the measurement vector with the quantity an where a is 
the fraction of the state vector that is measured. We also 
assume the same number of measurements, m, is received 
by all of the sensors. In addition, the total number of 
sensors in the distributed architecture are assumed to be 
evenly distributed among the local processors. With these 
assumptions, the following table compares the computa- 
tional complexity of the various algorithms: 

Algorithm 
Centralized 
Individual Estimate 
Combined Estimate 

Approx. Operation Count 
Q(N.Tm((l + oV + m2T-lJT 
0(N.T*gi+a)n»+T2T-l)) 
0(iVpr^((H-a)nJ + r2r-1)~ 

**«(*) 

;cfc(*)Äk(*) (£\(k\k) 

-Cl0{k)&t(k\k-1)) (26) 

=    \^lq{k)Klq{k)\ CfjWKijik) (27) 

»here zt(k) represents the single pseudo-measurement of 
^get t, created by a weighted average of combined mea- 
surements. Since the measurement reconstruction is per- 
onned on the estimate from each local processor, we add 

a subscript t to indicate processor i. 
Since the noise from each sensor is independent and 

aussian, the pseudo-measurement noise covariance is 
lt., 

R\(k)   =   J^KUQIUjikXKtiik))'       (28) 

his value is passed to the global processor for use in its 
aiman filter algorithm in (6), where the predicted inno- 
«on covariance is now target dependent because of the 

«PPücation of K*j(k). Note that in the original Kaiman 
er algorithm, j corresponded to a sensor. In the global 

^ rocessor j corresponds to a local processor which essen- 
**% acts as a sensor for the global processor. 

4. Complexity 
the computational load corresponds to the limit of 
^ number of operations required to complete the task, 

ere an operation is defined as a combination of one 
numh and one multiplication. Once the order of the 
com i °f operation counts is calculated, the result is a 
Dumh e?Uati°n based on the number of sensors JV„ the 
of tar*     measurements from each sensor, the number 

lent»?6? 5' the length of the state vector n> and the 

'racki      -    measurement vector- For distributed target 

»,   
To 

The complexity of the distributed algorithms is listed 
for the global processor only, the demand at the local pro- 
cessors can be calculated by replacing N, with Nt( in the 
row for the centralized algorithm. Notice that while the 
operations count for the centralized algorithm is linear 
with respect to the number sensors, it shows quadratic 
growth with the number of measurements received by 
those sensors. The number of measurements on each sen- 
sor has been replaced with the number of targets in both 
of the distributed algorithms, lowering the computational 
demand. This advantage becomes more pronounced in 
high clutter environments. 

Communication demands are also a concern. The cen- 
tralized algorithm requires that all measurements be sent 
to the processor. The individual estimate algorithm re- 
quires that each local processor sends all target estimates 
and Kaiman gain matrices for each sensor. The com- 
bined estimate algorithm requires that each local proces- 
sor sends the Kaiman gain matrix for each target from 
each sensor and a single state estimate for each target to 
the global processor. The actual communication demands 
are shown in the following table: 

Algorithm Values transmitted 
Centralized NgTnan 
Individual Estimate N.Tn(an +1) 
Combined Estimate Nvn + N.Tcm* 

f     'ng, we also include the number of local processors 
P and the number of sensors on each local processor, 

simplify the equations for comparison of the relative 

As the number of sensors grows, the distributed fu- 
sion algorithms have a distinct advantage over centralized 
systems in both computational complexity and communi- 
cation requirements, especially when the clutter density is 
very high. However, in low-clutter environments or when 
using very few sensors, the centralized system has compa- 
rable or lower computational and bandwidth demands. 

5. Simulation Results 
In this section we present the results of several Monte 

Carlo simulation studies that were run using the sensor 
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fusion techniques discussed in this paper. The tracking 
situation presented is two targets moving in 2D in nom- 
inally straight lines corrupted by acceleration or control 
noise. This noise is zero-mean, white, and Gaussian with 
covariance matrices of 0.0144 times the identity matrix. 

The tracking systems consisted of a 3-sensor central- 
ized platform running a centralized fusion algorithm and 
4-sensor distributed architecture platforms running the 
Individual and Combined Estimate Reconstruction algo- 
rithms. Both distributed fusion systems had two local 
processors with 2 sensors each. Additionally, the local pro- 
cessor data was used to provide information on 2-sensor 
centralized fusion algorithms. Sensor noise is also zero- 
mean, white, and Gaussian with covariance matrices of 
0.0144 times the identity matrix. Clutter density was var- 
ied between 0.6 and 0.9, resulting in an average of 1.5 
to 2.25 clutter points per gate. Each simulation assumed 
perfect knowledge of both the initial target states as well 
as noise levels. One hundred Monte Carlo runs were per- 
formed in each tracking simulation. 

Figure 2 shows the RMS position error versus clutter 
density for the two distributed fusion tracking algorithms 
as well as two- and three-sensor centralized fusion algo- 
rithms. The distributed fusion algorithms clearly outper- 
form the 2-sensor centralized system, but not the 3 sensor 
system. However, the computational and communication 
requirements of the 3-sensor centralized system are gen- 
erally larger than the requirements for either of the dis- 
tributed systems. 

r 

 x— Individual Est. Reconstruction 
. . -o- - - Combined Est. Reconstruction 

. + . • 2-Sensor Centralized Fusion 
....*—. 3-Sensor Centralized Fusion 

0.6 0.7 0.8 
Clutter Density A 

0-9 

Figure 2: RMS error is shown vs clutter density in a series 
of two-target tracking simulations for the various 
tracking algorithms. 

6. Conclusions 
The measurement reconstruction approach has be» 

extended to a more generalized class of distributed fu 

sion systems. The evaluation of the computational ^ 
communication demands of the different algorithms ^ 
presented, and simulation results show promising ^ 
provements over local processor performance, ty^ 
adding more sensors in a centralized scheme may so^ 
times provide better tracking performance, in app^ 
tions where microprocessor capabilities and communi^ 
tion bandwidth are limited, distributed algorithms Pro> 

vide a reliable method of tracking. 
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Abstract 
Current multisensor fusion tracking systems can be 

easily overwhelmed by incoming data, especially as the 
number of targets and sensors increases. Sensor manage- 
ment schemes have been proposed to reduce the compu- 
tational demand of these systems while minimizing the 
loss of tracking performance. This paper presents a sys- 
tem that will maintain a desired covariance level for each 
target while reducing the resource demands on the track- 
ing system. Other functions performed by a sensor man- 
ager like prioritizing and scheduling are assumed to be 
done elsewhere, but result in delays in the execution of 
sensing requests made by the system. Three sensor selec- 
tion algorithms are presented based on different resource 
and performance metrics and show a dramatic improve- 
ment over "dumb" sensing systems in simulation. Exe- 
cution delay is shown to have a deleterious effect on the 
tracking performance of the system, but most ofthat per- 
formance can be restored when a prediction algorithm is 
used to model the delay. 

1. Introduction 
The application of multisensor fusion to surveillance 

systems has provided superior tracking performance at 
the cost of increased computational demand. As the 
number of targets and sensors increases, tracking sys- 
tems can very quickly become overloaded by the incom- 
ing data. What is needed is a sensor management sys- 
tem that can balance tracking performance with system 
resources. Such a system also needs to be able to gen- 
erate sensing actions, then prioritize and schedule those 
actions [3]. 

To date, most sensor management techniques have 
treated this as an optimization problem, where the goal 

'This work was supported in part by the Data Fusion Corpo- 
ration, the Colorado Advanced Software Institute, an Office of 
Naval Research Young Investigator Award (Grant N00014-97-1- 
0642), and a National Science Foundation Early Faculty CAREER 
Award (Grant CMS-9625086). The authors would also especially 
like to thank Woody Kober and John K. Thomas of the Data Fu- 
sion Corporation for suggesting this area of research and for their 
feedback in the development of the sensor selection algorithms. 

is to apply combinations of sensors to each target to 
minimize a cost function generated using target prior- 
ity, threat level, and the covariance of each target state 
estimate [4]. A variation of this is to maximize a cost 
functional based on the increase in state information from 
each sensor combination [5]. This method, however, does 
not address the problems of target priority and schedul- 
ing. Additionally, neural nets and decision theory have 
been applied to the sensor management problem [3]. 

A drawback of the cost functional approach is that it 
is difficult to specify a target-specific covariance goal, like 
reducing the covariance of a target estimate to accurately 
fire a weapon. A solution to this is to separate the sys- 
tem into a covariance controller and a sensor scheduler. 
The covariance controller can assign sensor combinations 
to each target to meet a desired covariance level. If the 
desired covariance changes for a target, then the sensor 
assignment changes for only one target. The scheduler 
prioritizes sensing actions and executes them as time al- 
lows. Low priority actions may be delayed until future 
scans or may be dropped altogether. 

In this paper, the sensor scheduler is relegated to a 
"black box" without specifying its operations. However, 
as mentioned above, one of the expected effects of the 
separate sensor scheduler is the delay of the execution 
of sensing requests. This arises due to scheduling delays 
and the limited computational resources of the tracking 
system. Because of this, not all sensor requests can be 
executed in a single scan, causing sensor requests to ac- 
cumulate in the command queue. This results in future 
requests being delayed as well. 

The paper is organized as follows. In Section 2, we 
briefly review the Kaiman filter equations used in the 
tracking algorithms. We develop the covariance control 
algorithms in Section 3. The effect of delay on the track- 
ing performance of the algorithms and how to reduce 
that effect are discussed in Section 4. Section 5 presents 
preliminary simulation results demonstrating the perfor- 
mance of the developed algorithms. Finally, some con- 
clusions and issues to consider in future work are given 
in Section 6. 

0-7803-4530-4/98 $10.00 © 1998 AACC 



2. Mathematical Preliminaries 
The sequential Kaiman filter is an algorithm for com- 

bining multiple inputs from stochastic or slightly non- 
linear systems to form an estimate in a state space rep- 
resentation. The Kaiman filter is based on the following 
assumptions about the target and measurement systems 
[1, 2]: 

x(k)    =    Fx(k-l) + Gu(k-l) + q(k-l)    (1) 

Zj(k)    =   HjX(k) + Wj(k),     i = l JV.     (2) 

where x(k) is the current state of the target; F, G, Hj are 
known system matrices; u(k) is the control signal; Zj(k) is 
a measurement of the target from sensor j; and there are 
Ns sensors. q(k) is a variable representing process noise 
or higher-order motion not modeled by F, and Wj(k) is 
a variable representing measurement noise in sensor j. 
Both q(k) and Wj(k) are assumed to have zero-mean, 
white, Gaussian probability distributions. 

Since q(k) and Wj(k) are zero-mean noise processes, 
the target states and measurements in the next time in- 
terval can be predicted by: 

x(k\k-l)    = 

Zj{k)    = 
Fx(k - 1 | k - 1) + Gu(k - 1) (3) 

Hjx{k | k - 1) (4) 

The input u{k) is considered known and will be omitted 
in future equations because it can be easily reinserted. 
The quantity Vj(k) = Zj(k) - Bj(k) is known as the inno- 
vation. The predicted covariance of the state and inno- 
vation can be found by: 

P(fc | Jfe - 1)    = 

Sj(k)    = 
FP(k-l\k-l)F' + Q(k-l)(5) 

HjPiklk-^H'j+Rjik) (6) 

where Q(k) and Rj(k) are the covariances of the noises 
in the plant and the sensor, respectively. 

With Ns sensors, there are 2^* possible combinations 
or subsets of those sensors that can be used by the covari- 
ance controller. The ith possible subset is defined as $j 
where NSi is the number of sensors in that combination. 
For a given i, the sequential algorithm runs a separate 
Kaiman filter for each sensor, propagating its estimate to 
the next filter [6]: 

xi(k | *) = x(k | k - 1) + K1(k)(z1(k) - Hxx{k | * - 1)) 

xj(k | k) = Vi(fc I k) + KjWfeik) - HjXj-^k | Jfe)), 

x(k\k) = xNai(k\k) (7) 

where 

P(k\k-l)H[Sr1(k) K,(k)    = 

Kj(k)   =   P^iklQH'jS] 

PHW ■■© AP Controller 
* Sensor 

Scheduler 

P(klk-1) 

■ Measurements 

(2) 

Kaiman 
Filter 

Figure 1: Block Diagram of a Tracking System with Co- 
variance Controller 

The state covariance is updated for each filter by: 

Pi(k\k)   =   (I-KiiQHJPiklk-l) 

Pj(k\k)    =    {i-Kjik^Pj.^klk),     je${ 

P(k\k)   =   PN.t(k\k) (9) 

Once the state and covariance estimates have been up- 
dated, they are fed back into the algorithm and the entire 
process is repeated for the new set of measurements at 
the next time step. Alternatively, the covariance update 
can be calculated in a single step using the inverses of 
the covariance matrices [2]: 

p-^klk)    =   P-^klk-ti + J^H'jR^HiilO). 

Since the sum 52jtti H'jR^Hj is used frequently, we 
shall define it as the sensor information gain: 

Ji   =    Y,H'iR7lHi>     i = l,...,2"'      (11) 

where Ji is the sensor information gain for the ith com- 
bination of sensors. 

3. Covariance Control Algorithm 
Figure 1 shows the block diagram of the tracking sys- 

tem. The Kaiman filter can be thought of as the plant 
while the sensor scheduler acts as a system delay. Con- 
trol of the covariance of the system is implemented via 
a sensor selection algorithm. The sensor selection is de- 
termined based on the difference between the inverses 
of the predicted covariance in Equation (5), and the de- 
sired covariance, P<*(&). Replacing the updated covari- 
ance matrix in Equation (10) with the desired covariance 
and solving for the necessary sensor information gain, we 
see that we want J» to equal AP, where 

AP   = Pj\k)-P-\k\k-l) (12) 

(*),      j&i       (8) 

To achieve the desired covariance, the sensor informa- 
tion gain will ideally equal the difference between the 
inverses of the actual and desired covariance matrices. 
Generally, none of the sensor information gains will ex- 
actly equal this difference; thus «7* - AP will typically 



not be zero for any i. An algorithm is needed to select a 
set of sensors that will make J* — AP as "small" as possi- 
ble, allowing the desired covariance to be reasonably well 
approximated. 

The use of Ji — AP to evaluate sensor combinations 
also reduces the computational complexity of sensor se- 
lection. To evaluate a sensor combination, that combi- 
nation must be used to update the predicted covariance. 
Updating the covariance using Equations (6), (8), and (9) 
requires calcuating the matrix inverse of Sj(k) for each 
sensor in a given combination. If multiple sensor com- 
binations are evaluated, this must be repeated for each 
sensor combination in the search. On the other hand, us- 
ing Equation (10) to update the covariance requires the 
calculation of the matrix inverse of P-1 (k\k — 1) and the 
calculation of Ji for each sensor combination. However, 
the Ji matrix for each combination can be precalculated 
and stored in a library. With this library, only one ma- 
trix inverse, P_1(A;|A; - 1), needs to be calculated in each 
scan, regardless of the number of sensor combinations. 

3.1. Sensor Selection Algorithms 
One way to define the objective of the covariance 

control algorithm is to require that the sensors used pro- 
duce an updated covariance that is within the desired 
covariance at all times. This will result in the difference, 
Pd(k) — Pi(k\k), where Pi(k\k) is the updated covariance 
using sensor combination i, having all positive eigenval- 
ues (as well as the difference Ji — AP). Since the goal 
is also to reduce the computational load on the tracking 
system, the sensor combination with the fewest number 
of sensors that produces all positive eigenvalues in the 
covariance error should be used at each scan. We shall 
call this the Eigenvalue/Minimum Sensors Algorithm. 

Another method of rationing sensor resources is to 
view positive eigenvalues in the covariance error as excess 
resources applied to a target and negative eigenvalues as 
too little resources applied to that target. As such, the 
goal of the sensor selection algorithm should be to mini- 
mize the norm of the inverse covariance error, AP. This 
is the Matrix Norm Algorithm. One major drawback 
to this approach is that the inverse covariances used in 
Equation (12) are not always well-behaved, and the use 
of the difference Pd(k) - Pi(k\k) instead of Jj —AP yields 
more reliable evaluations of sensor combinations. The li- 
brary of pre-calculated Jj's can still be used, but will 
require an extra matrix inverse that converts Pi(fc|fc)-1 

in Equation (10) to Pi(k\k) to be calculated for each sen- 
sor combination. This technique does not guarantee that 
the resulting covariance will be within the desired covari- 
ance limits since the algorithm does not take the sign of 
the eigenvalues of Pd(k) - Pi(k\k) into account. 

A third algorithm, Norm/Sensors, relaxes the re- 
quirements of the Matrix Norm technique, allowing the 
norm of the covariance difference to vary within a pre- 
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Figure 2: Block Diagram of a Tracking System with Co- 
variance Controller and Prediction 

defined boundary ±6, selecting the sensor combination 
that uses the fewest sensors while keeping the covariance 
within that boundary. 

4. The Effects of Delay 
Similar to the effects of delay on dynamic control 

systems, the tracking performance of the sensor selec- 
tion algorithms when there is delay becomes less stable. 
The effects of delay can be ameliorated by predicting the 
covariance estimate after the delay, allowing the sensor 
selection algorithm to make its decision based on what 
the predicted covariance will actually be when the de- 
layed sensor selection is executed. To implement this 
prediction scheme, we simply run the Kaiman filter for 
the projected length of the delay, using the prior sensor 
selections for that time period (see Figure 2). Correctly 
assuming the delay and sensor selections will restore most 
of the performance reduction caused by the delay. 

5. Simulation Results 
The following figures are the results of computer sim- 

ulations of the three covariance control algorithms for 
multi-sensor tracking systems. A "dumb" system that 
simply always uses all its sensor resources is also included 
for a performance comparison. Of the several simulations 
that have been performed, we have chosen to present a 
few cases which best showcase the distinctions between 
the various systems. Each system uses three sensors that 
measure the position states x and y with different noise 
variance values in the x and y directions. Sensor 1 has 
a measurement noise variance of 1 and 0.05 in the x and 
y directions, respectively. Sensor 2 has noise variances 
of 0.05 and 1. Sensor 3 has a noise variance of \/0.05 
in both directions (all sensor noise covariance matrices 
are diagonal). Hence, Sensor 1 is very accurate in the 
y direction, Sensor 2 is very accurate in the x direction, 
and Sensor 3 is moderately accurate in both directions. 
However, overall, the sensors are approximately equally 
accurate in that the determinants of the noise covariance 
matrices for the sensors are about equal. 

A single object nominally moving in the positive y 
direction of an x — y space is tracked using a sequential 
Kaiman filter. The target state consists of [x, x, y, y]T. 
Its motion is corrupted by a zero-mean, white, Gaussian 



noise with a covariance of 0.12/ (/ = identity matrix). A 
desired estimate covariance, Pd, is denned and follows a 
step pattern, starting as a diagonal matrix with eigenval- 
ues [0.2,0.3,0.2,0.3] at scan 0 and decreasing to a matrix 
with eigenvalues [0.05,0.25,0.13,0.22] at scan 25. The 
boundary size 5 for the Norm/Sensors algorithm is 0.2. 

Figure 3 shows the covariance error using two met- 
rics: the smallest eigenvalue of the difference between the 
desired and actual covariances, and the 2-norm of that 
difference. Figure 4 shows the number of sensors used 
per scan - corresponding to the computational work load 
imposed on each tracking system. 

Compare the performance of the "dumb" system 
to that of the Eigenvalue/Minimum Sensors algorithm. 
While both systems always meet the desired covariance 
goal, note that in the first half of the tracking task, the 
Eigenvalue/Minimum Sensors algorithm uses fewer sen- 
sors than the "dumb" system, yet suffers very little loss 
in covariance error performance. In the second half of the 
tracking task, both systems use all of the sensor resources 
to meet the desired covariance. While the "dumb" sys- 
tem wastes sensor resources by using all sensors for each 
scan, the sensor selection algorithm is able to balance 
tracking performance goals with system demands, allo- 
cating maximum resources only when necessary. 

In the first half of the tracking task, the two norm- 
based algorithms choose the same sensors while in the 
second half, each algorithm chooses a different sensor 
combination. In each case, the Norm/Sensors algorithm 
uses the fewest sensors, while the Eigenvalue/Minimum 
Sensors algorithm requires the most of all of the sensor 
selection algorithms. However, except for the "dumb" 
system, the Eigenvalue/Minimum Sensors algorithm pro- 
vides the best tracking performance, always selecting sen- 
sors so that the covariance is within the desired covari- 
ance, hence leading to the smallest RMS errors between 
the state estimate and the truth. The Norm/Sensors 
algorithm typically allows the largest covariance. The 
Matrix Norm algorithm's performance generally falls be- 
tween the other two techniques. 

These algorithms represent a continuum of trade- 
offs of computational demand versus tracking accu- 
racy. Of the sensor selection algorithms, the Eigen- 
value/Minimum Sensors algorithm will, in general, use 
the most sensor resources, since it has the strictest covari- 
ance requirement (the covariance must be less than the 
desired covariance in all directions). The Matrix Norm 
may choose fewer sensors, since it does not require the co- 
variance to be within the desired covariance. Finally, the 
Norm/Sensors algorithm should choose the fewest sen- 
sors, but generally allows the largest covariance. 

The effect of delay on the system is also simulated, 
using the Eigenvalue/Minimum Sensors Algorithm and 
a slightly different system model. The Sensor 3 now 
has variances of 0.01 in both directions.   The desired 
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3: Comparison of the Covariance Tracking Accuracy 
of Sensor Selection Systems with no Delay 

covariance is initially 0.57, decreasing to 0.2/ at scan 25. 
The simulations characterize a "dumb" system that uses 
all three sensors throughout the tracking task and has 
no delay; a "smart" system running the EV/Minimum 
Sensors Algorithm with no delay; a system running the 
EV/Minimum Sensors Algorithm, but whose choices are 
delayed by five scans; and a system with its sensor choices 
delayed by 5 scans, but that compensates by predicting 
the correct covariance at the end of that delay. In all 
but the "dumb" system, no sensors are selected initially 
- meaning the systems with delay will not make any tar- 
get measurements for the first 5 scans. 

Figure 5 shows a plot of the smallest eigenvalue of 
the difference between the desired and actual covariances 
(the various curves have been shifted slightly both verti- 
cally and horizontally to improve the readability of the 
figures). The plot shows the poor performance observed 
when a delay is added to the sensor selection system and 
not accounted for in the algorithm - the actual covari- 
ance both over- and under- shoots the desired covariance. 
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Notice that the predictive system recovers quickly from 
the delay-induced errors. Once again, since the "dumb" 
system uses all three sensors each scan, its covariance is 
always contained within the desired covariance ellipsoid. 

Figure 6 shows the number of sensors used in each 
scan - again corresponding to the computational work 
load imposed on each tracking system. The "dumb" sys- 
tem uses the most system resources since it uses all of 
the sensors throughout the tracking task. The "smart" 
system without delay and the predictive system use the 
fewest - increasing the number of sensors only briefly 
when the desired covariance is reduced. The delayed sys- 
tem without the predictive compensation uses less re- 
sources than the "dumb" system, but more than the un- 
delayed or predictive systems. While uncompensated de- 
lays can severely degrade system performance, predictive 
compensation of those delays can restore most of that 
performance. 

6. Conclusions and Future Work 
Several sensor selection algorithms have been pro- 

posed for maintaining a target's state estimate covari- 
ance near a desired level without over-taxing the com- 
putational resources of a tracking system. The proposed 
algorithms maintain a specific desired covariance for each 
target while reducing the resource demand of current un- 
managed or "dumb" systems. Simulation results indicate 
that the three sensor selection algorithms presented in 
this paper clearly outperform "dumb" systems in terms 
of resource efficiency. Other sensor manager functions 
including prioritizing and scheduling are assumed to be 
performed separately and will impact the covariance con- 
trol algorithms in the form of request execution delays. 
As in dynamic systems, delay dramatically reduces the 
performance of the control algorithm, but if it can be 
accurately modeled, most of the performance can be re- 
stored. 

There are many issues remaining for future study. 
First, a more rigorous exploration of the relationship be- 
tween tracking performance and delay is needed, includ- 
ing an analysis of the effect of the size of the delays and 
errors in the algorithms' estimate of the actual delay. 
Second, in this paper the controller and sensor manager 
have been assumed to operate at the same rate as the 
Kaiman filter, which is unlikely in practice. Future stud- 
ies should allow different scan rates between the con- 
troller/manager and Kaiman filter. Finally, while this 
work concentrates on control of the covariance estimate 
of a single target, these algorithms will eventually be ap- 
plied in multi-target scenarios. 
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Abstract 
Current multisensor tracking systems can be 

easily overwhelmed by incoming data, especially as 
the number of targets and sensors increases. A sen- 
sor management scheme has been proposed in pre- 
vious -work to reduce the computational demand of 
these systems while minimizing the loss of track- 
ing performance by selecting only enough sensing 
resources to maintain a desired covariance level for 
each target, reducing the resource demands on the 
tracking system. However, the proposed system is 
sensitive to delays in the execution of sensor assign- 
ments. This paper analyzes the effect of that de- 
lay and examines methods of eliminating that effect. 
Because of the lack of a closed form solution for the 
covariance matrix of the discrete-time Kaiman fil- 
ter, the analysis centers on the performance of the 
continuous-time scalar Kalman-Bucy filter and then 
extends those results to the discrete-time case. The 
analysis shows that for all stable systems and un- 
stable systems under certain conditions, the sensi- 
tivity of the covariance estimate to delays of sensing 
actions decreases steadily with time. Furthermore, 
when attempting to estimate unknown delays, over- 
estimating the delay will produce smaller covariance 
prediction errors than underestimating the delay by 
a similar amount. 

Copyright ©1998 by the American Institute of 
Aeronautics and Astronautics, Inc. All rights re- 
served. 

1. Introduction 
The application of multisensor fusion to surveil- 

lance systems has provided superior tracking perfor- 
mance at the cost of increased computational de- 
mand. As the number of targets and sensors in- 
creases, tracking systems can very quickly become 
overloaded by the incoming data. What is needed is 
a sensor management system that can balance track- 
ing performance with system resources. Such a sys- 
tem also needs to be able to generate sensing actions, 
then prioritize and schedule those actions.4 

To date, most sensor management techniques 
have treated this as an optimization problem, where 
the goal is to apply combinations of sensors to each 
target to minimize a cost function generated using 
target priority, threat level, and the covariance of 
each target state estimate.5 A variation of this is 
to maximize a cost functional based on the increase 
in state information from each sensor combination.7 

This method, however, does not address the prob- 
lems of target priority and scheduling. Additionally, 
neural nets and decision theory have been applied to 
the sensor management problem.4 

A drawback of the cost functional approach is 
that it is difficult to specify a target-specific covari- 
ance goal, like reducing the covariance of a target 
estimate to accurately fire a weapon. A solution to 
this is to separate the system into a covariance con- 
troller and a sensor scheduler.3 The covariance con- 
troller can assign sensor combinations to each tar- 
get to meet a desired covariance level. If the desired 
covariance changes for a target, then the sensor as- 
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signment changes for only one target. The scheduler 
prioritizes sensing actions and executes them as time 
allows. Low priority actions may be delayed until fu- 
ture scans or may be dropped altogether. 

In this paper, the sensor scheduler is relegated 
to a "black box" without specifying its operations. 
However, as mentioned above, one of the expected 
effects of the separate sensor scheduler is the delay 
of the execution of sensing requests. It is important 
to note that delayed sensing requests do not repre- 
sent measurement delays, where the output from the 
sensor is delayed before reaching the Kaiman filter. 
Measurement delays have been studied and methods 
have been proposed to account for their effects.2'6 A 
sensor request is the assignment of a sensor to or the 
removal from a tracking task. Once assigned, a sen- 
sor will provide tracking information at each scan 
for the assigned target until it is removed. 

Delayed sensor requests arise due to scheduling 
delays and the limited computational resources of 
the tracking system. Because of this, not all sensor 
requests can be executed in a single sampling pe- 
riod, causing sensor requests to accumulate in the 
command queue. This results in future requests be- 
ing delayed as well. 

This paper is organized as follows. The covari- 
ance control architecture is described in Section 2. 
Since the equations that govern the behavior of the 
covariance of the discrete Kaiman filter generally 
have no closed form solution, Section 3 analyzes the 
effect of delay on the scalar continuous Kaiman fil- 
ter, the covariance of which has a well-defined closed- 
form solution. The use of delay estimation to pre- 
dict what the covariance will be when the sensing 
requests are executed is covered in Section 4. Sec- 
tion 5 covers the extension of these results to the 
discrete-time Kaiman filter. General trends are ob- 
served that limit the results that can be extended 
to the discrete-time filter. Our initial work in ex- 
panding this analysis to more general vector spaces 
is included in Section 6. Future work in generaliz- 
ing to higher-order models is also proposed in this 
section. Conclusions are included in Section 7. 

2. Covariance Control 
Figure 1 shows the block diagram of the track- 

ing system. The Kaiman filter can be thought of 
as the plant while the sensor scheduler acts as a sys- 
tem delay. Control of the covariance of the system is 
implemented via a sensor selection algorithm. The 
sensor selection is determined based on the difference 
between the predicted covariance for the next sam- 
pling period and the desired covariance. Algorithms 
for this task have been presented in Ref. 3.  Note 

W 

P0*-1) 

Figure 1: Block Diagram of a Tracking System with 
Covariance Controller (Sensor Selection Al- 
gorithm). 

System Covariance vs Time 
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Figure 2: The covariance of a system converges quickly 
to its steady-state value. 

that the only input to the controller is the differ- 
ence between the desired and actual target estimate 
covariances. Actual target tracking and estimation 
are performed by the Kaiman filter. The controller's 
job is to regulate the sensing resources used by the 
Kaiman filter to reduce the computational load on 
the tracking system. 

Similar to the effects of delay on dynamic control 
systems, the tracking performance of the sensor se- 
lection algorithms when there is delay becomes less 
stable. The problems that delay causes are due to 
the fact that the covariance controller makes sen- 
sor selections based on the current covariance. For 
example, the controller decides on a sensor selection 
and executes it at time zero (see Figure 2). Then 0.2 
seconds later, if the desired covariance Pd changes, 
the controller selects a different set of sensors based 
on the difference between Pd and the covariance at 
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Figure 3: Block Diagram of a Tracking System with 
Covariance Controller and Prediction 

that time. If the execution of this change is delayed 
for 0.2 seconds, then since the covariance difference 
Pd — P*|jfc_i at r = 0.4 is different from the covari- 
ance difference at t = 0.2, either excessive or insuf- 
ficient sensor resources have probably been assigned 
to this tracking task. The effects of delay can be 
ameliorated by predicting the covariance estimate 
after the delay, allowing the sensor selection algo- 
rithm to make its decision based on what the pre- 
dicted covariance will actually be when the delayed 
sensor selection is executed (see Figure 3). Correctly 
predicting the delay and sensor selections will restore 
most of the performance reduction caused by the de- 
lay.3 

Because the controller is separate from the 
Kaiman filter, it can run at a slower speed than 
the Kaiman filter, allowing several iterations of the 
tracking algorithm to be performed before a new sen- 
sor combination is considered by the controller. This 
can be done by predicting the covariance at the next 
controller sampling period using the same architec- 
ture that is used to model a delay. In such a system, 
one sampling period of the controller will correspond 
to multiple sampling periods of the Kaiman filter. 
One advantage of having a slower controller is that 
the target estimate covariance from the Kaiman fil- 
ter will be closer to steady-state, which will, in gen- 
eral, make the covariance prediction more robust to 
errors caused by delay. 

3. Analysis of Delay in the 
Continuous Kaiman Filter 

We begin with the scalar multisensor version of 
the Kalman-Bucy filter: 

where x is the target state variable to be tracked 
and yi are the measurements of that state by a suite 
of N, sensors. Note that when a > 0, the nominal 
system is stable. The state evolves according to a 
linear differential equation corrupted by white, zero 
mean noise w(t) with variance q. The measurements 
are also corrupted by white, zero mean noise Vj(t) 
with variance n, and Efairtf — 0 when i jt j. The 
measurements can also be represented as a vector: 

Y(t)   =   Hx(t) + V (3) 

=  fci (*),»(*),..., yw.(*)]' 
V(t)   =   [v1(t),v2(t)1...,vN.(t)}' 

H   =   [1,1,1,...,!]' 

The variance of the measurements becomes a diag- 
onal matrix R, with eigenvalues equal to rit i = 
1.....JV.. 

The state estimate is then 

±(r)   =   -a&(t)+p(!t)H'Rrl\Y{t)-H£[t)] 

(4) 

where p{t) is the state estimate variance denned by 
the following differential equation: 

p{t)   =   -2op(r) + ?-p2(r)Ä'Ä-1lT     (5) 

which reduces to the scalar equation, 

pit)   = -2ap(i) + q - — 
r 

H'R^H 

N, 

(6) 

- iL 
t=i 

Equation (6) is identical to the differential equation 
describing the covariance of a single sensor Kalman- 
Bucy filter with measurement noise variance of r. 
Thus the covariance analysis of scalar, multisensor 
systems can be reduced to that of scalar, single sen- 
sor systems with no loss of generality. 

Equation (6) has the following closed form solu- 
tion: 

x(t)    =   -ax(t) + w(t) 

yi(t)     =    X(t)+Vi{t)      t = l,. ;N. 
(1) 
(2) 
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p(t)   =   pi + P1+P2 
Ce2« •1 

=      yjd .*+* 

Pa 

Pi 

P2 

C 

£ 
r 

P(0) 
r(a — a) 

r(a + a) 
P0+P2 

(7) 

(8) 

Po-Pi 

Notice that as t goes to infinity, the second term in 
Equation (7) goes to zero. Thus pi is the steady- 
state value of the state estimate variance. We now 
define the error in the estimate of the updated state 
variance due to a delay in sensor request execution 
as 

Ap{t,d)   =   p(t)-p(i + d) 

2raCe2at(e2ad - 1) 
0) 

(Ce2at - i)(Ce2"(t+d) - 1) 

2raCe2at(e2ad-l) 
(J2e4ate2ad _ Qe2at^2ad + 1) + 1 

where t, d > 0. This is a valid assumption since the 
equation only describes the variance after t = 0 and 
a sensing request can never be executed before it is 
requested. Divide the numerator and denominator 
by e4at to get 

Ap(t,d) = e~2at 2raC(e2ad -1) 
C2e2ad - Ce-2at{e2ad + 1) + e-4<« 

(10) 

It is now easy to see that as t increases, Ap(t,d) 
goes to zero. If the convergence is monotonic, then 
the sensitivity of the covariance estimate to a sensor 
request delay will always decrease with time. If this 
is the case, then a lower controller scan rate (com- 
pared to the Kaiman filter scan rate) will result in 
a more robust performance of the sensor selection 
algorithms. 

If the convergence to zero is monotonic, the sign 
of the derivative should not change (if Ap(t, d) is 
negative, it is always increasing to zero; if it is posi- 
tive, it is always decreasing to zero). 

|Ap(t,<f) = 

-4ra2e~2a((e2o"i - l)(C3e2ad - Ce~iat) 
(C2e2ad - Ce-2<*t(e2a'i + 1) + e~»»*)2 

(11) 
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Figure 4: Examples of the qualitative performance of 
variance evolution with time for various C. 
For the case where C > 1, po > pi and for 
both cases where C < 0, po < pi- 

Since e2ad is always greater than 1 and the denom- 
inator is squared, only the term Cr3e2od - Ce~iat 

will affect the sign of the derivative. The assump- 
tion that t, d > 0 leads to \C\ > 1 as a sufficient 
but not necessary condition for the monotonicity of 
Ap{t,d). This behavior can be seen in Figure 4. A 
stricter requirement for monotonicity is C2e2ad > 1 
since e~*ot is never larger than 1. 

3.1. Analysis of C 
The next question becomes: When is |C| < 1? 

C   = (12) 
P0+P2 

P0-P1 
_   po+ra + ra 

Po-ra + ra 

Observe from Equation (8) that a > \a\. Then, re- 
gardless of the sign of a, the numerator of C is always 
positive. This in turn means that the sign of C is 
solely related to the relationship between the initial 
and final variances of the state estimate. Thus if 
Po > Pi, then C is positive and if po < plt then C is 
negative. 

For the case of 0 < C < 1, the following must 
hold 

Po+ra+ra 

ra 
< po-ra + ra (13) 

< — ra 

Since ra is always positive, this condition cannot ex- 
ist. Therefore, Po<Pi=*>C>0=*-C>l. Thus, 
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the covariance of all systems will converge monoton- 
ically when the initial covariance is larger than the 
steady-state covariance. 

For the case of -1 < C < 0, the following must 
hold 

po + ra+ra    <    -(po -ra + ra)       (14) 
Po    <    -ra 

Since po and r are always positive, this implies that 
a must be less than zero (x(t) is unstable) for this to 
occur. Therefore, when po<Pi, a > 0 =*■ C < —1. 
This, combined with the monotonicity of all systems 
with C > 0 indicates that the covariance error due 
to delay of a stable target will always converge to 
zero monotonically with time. When po < Pi and 
a < 0, po > — ra =*■ C < -1. When po < —ra 
holds (meaning (-1 < C < 0), then CVod > 1 is 
required for monotonicity. 

4. Prediction of Covariance Via Delay 
Estimation 

It has been shown that the effects of delay can 
be almost completely eliminated by predicting the 
actual variance after the delay.3 The sensor manager 
can then select sensor combinations based on p(t+d) 
rather than p(t). We now look at the effect of errors 
in the estimate of the delay. Define the covariance 
prediction error due an error, 8, in the delay estimate 
as 

Ap(t,d,8)    =   p(t + d)-p(t + d + 8)    (15) 
=   p{t')-p{t' + 8) 
=    Ap(t',8) 

Thus a redefinition of variables allows us to use the 
variance error from before. Note, however, that 8 
can be positive or negative. 

One aspect of covariance prediction that is use- 
ful is whether it is better to overestimate or under- 
estimate the actual delay. To examine this, assume 
a delay estimate error of ±<5. If 8 > 0, the delay 
has been overestimated; if 8 < 0, the delay has been 
underestimated. Since we can expect the variance 
error to have opposite signs for the two delay esti- 
mate errors, the sum of the two will have the same 
sign as the larger of the two errors. Assume for the 
moment, that 8 > 0. Then look at the following: 

Ap(r',,S) + Ap(t',-<J) = 

2raCe2gt'(e2af-l) 
C*eAat'e2al - Ce2a*'(e2a* +1) + 1 

2raCe?at'{e-2aS -1) 
+ C2e*at' er2ai - Ce2at'(e-2aS +1) +1 

2raCeSat' (2 - e~2aS - e2otf) 
(Ce2««' - l)(Ce2Q<''+*> - l)(Ce2ai' - 1) 

(C*-e-"»«') 

(16) 

If we look at the term (2 - e-2°* - e2°*) we find the 
derivative with respect to 8 is 

0(2 _ e-2aS 
— e ,2aS\ 

68 
=   2a(e -2aS J2aS )   (17) 

For 8 > 0 this derivative is always negative except 
at 8 = 0, which represents the local maximum. The 
value of (2-e~2o<s-e2a'5) at this point is zero. Thus, 
this term is always less than or equal to zero. 

Looking at Equation (16), the denominator con- 
sists of four terms of the form Ce^ — 1. Since the 
exponents are always positive, when C > 1, each 
term is always positive. When C < 0, each term 
is always negative. Thus the denominator is always 
positive and does not affect the sign of the sum of 
the two delay estimates. 

The terms left to control the sign of the sum 
Ap{f,8) + Ap(f,-8) are C and C2 - e~iat'. 1£ 
\C\ > 1 then C2 - e~4at' is always positive. If 
C > 0 (and thus > 1), then the sum in Equation (16) 
is negative - indicating that the error due to —8 is 
greater than the error due to <5. When C < —e2at', 
the sum in Equation (16) is positive, indicating that 
once again, the error due to — 8 is greater. Since 
Ü = t + d, the relation C < —e~2ad is a sufficient 
condition to ensure the superiority of overestimating 
the delay. Figure 5 shows the effect of different val- 
ues of C on Ap(t',£)+Ap(i', —8). In this case, when 
C = —0.1, the covariance prediction error is actually 
slightly larger when the delay is overestimated than 
when it is underestimated, but as \C\ increases, it 
becomes much more advantageous to overestimate 
the delay. Notice that when C = —10, the predic- 
tion error is very near zero regardless of how much 
the delay is overestimated. 
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Figure 5: The effect of delay estimation error on covari- 
ance prediction shows that as \C\ increases, 
the benefits of overestimating the delay in- 
crease as well. Here, r, q, and pQ are fixed 
and a is varied to yield different values of C. 

5. Extension to Discrete Kaiman 
Filter 

Since most tracking systems are discrete time 
systems, it is desirable to extend these results to 
the discrete Kaiman filter. Because the discrete fil- 
ter has no closed form solution, we will create a 
continuous-time model of the discrete system. Prom 
the continuous time covariance Equation (7), dis- 
crete equivalents of a, r, and q are needed to com- 
pute the discrete form of the covariance. Assume 
that the system represented in Equations (1) and 
(2) can be accurately modeled by the following dis- 
crete system: 

Zk+i    =   Fxk + wt 

Vk   =   Xk+ vk 

The state estimate becomes 

(18) 

(19) 

2k+i\k    =   Fxm (20) 

**+i|*+i    =   ä*+i|* + Kk+1(yk+1 -xk+i\k) 

The notation xk+1\k means "the estimate of x at 
time k + 1 given measurements through time A". 
The system variance can be calculated as follows: 

Pk+i\k   = 

Pk+l\k+l     = 

Kk+l     = 

**Pk + 9d 
1 

(21) 

(22) 

where qd and r& are the target and measurement 
noise variances, respectively. The updated covari- 
aace Pk+i\k+i will be abbreviated as pfc+1 to keep 
the equations readable. To include the use of multi- 
ple tracking sensors in these equations, replace y(k) 
with a vector containing the measurements from 
each sensor Y(k) = hi(k),y2(k),...,yN,(k)]'. The 
above equations become 

=   Fxk{k (23) 

=    xk+\\k + Kk+l(Yk+i - Cxk+1\k) 

=   F2pk+qd                                 (24) 
 1  

Pk+il*       *->i=l rd{ 

Pk+nk+iHR-1 

[1,1,1,-,1]' 

One method of converting the continuous-time 
Kaiman filter to discrete time is to use the follow- 
ing conversions, which match the state estimates of 
the discrete model to those of the continuous at the 
sampling times:1 

xk+l\k 
xk+l\k+l = 

Pk+l\k = 

P*+i|*+i = 

Kk+l — 
H - 

a   ss 
1-F 

T, 
Qd 
T, 

r   =   T,rd 

(25) 

9    = 

However, the covariance of this discrete-time 
system does not converge to the continuous-time co- 
variance. This should be expected since discrete- 
and continuous-time tracking are different pro- 
cesses. However, since the goal is to approxi- 
mate the discrete-time covariance process with the 
continuous-time equation, a better method is to at- 
tempt to match the steady-state covariance values 
of the two models. The differential equation for the 
continuous-time covariance is 

m = - P2«) -2ap(t)+q (26) 

=   0     (in steady state) 
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This can be approximated by the discrete time sys- 
tem as 

F = 1.8,qd = 0.01,r<i = 0.5, Scan Rate=0.1 sec 

„    (l-Kk+i)(F2pk + qd)-pk 

T. 

(27) 

(i-?Ä)(^ + «)-w 
T, 

Setting p(tk) = 0 and multiplying both sides of the 
equation by (F2?* + qd + rd) results in 

0   = 
-fV(it) - P(tk)(rd - F*Td + qd) + qdrd 

T, 
(28) 

Dividing both sides by rd gives 

F2 1 - F2 + ^ m 
0   =   zWfa)-       T    ****) + %. 

Tdl, 1, 1, 

(29) 

Comparing the right side of this equation with 
the right side of Equation (26) provides continuous 
equivalents of the discrete Kaiman filter: 

a   = 1-** + % 
2T, 

1    =    *r 
Qd 

T, 
rdTs 

F2 

(30) 

(31) 

(32) 

The constants a, pi, and pz are calculated as before 
using the above equivalent values of ä, q, and f. 

Figure 6 shows the covariance of a discrete sys- 
tem and the equivalent continuous system (calcu- 
lated as above). Note that although the two curves 
are similar and converge to the same point, they are 
not exactly the same. Figure 7 shows the covariance 
estimate error, Ap(£, d), versus time for two differ- 
ent delays. Note that in the first plot, the period of 
time where the error due to delay is increasing with 
time is longer for the discrete system than for the 
continuous system. In the second plot, the contin- 
uous system is monotonically decreasing, while the 
discrete system is not. Obviously the strict bounds 
derived for the continuous case do not hold for the 
discrete case. However, simulations do seem to show 
that when \C\ > 1, all of the limits for the continu- 
ous case hold for the discrete case as well. 

I 

0 35 
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Figure 6: A comparison of the covariance response for 
a discrete system and its continuous equiva- 
lent for C = -0.013. 

6. Generalization to Vector Spaces 
and Future Work 

We are currently extending our analysis to 
higher-order vector spaces: 

x(t)   =   Ax(t)+w(t) 
y(t)   =   Hx(t) + v(t) (33) 

where x is a length n state vector and y is a length 
m measurement vector. A is an n x n matrix, and H 
is an m x n matrix. Finally, w(t) and v(t) are length 
n and m (respectively) independent white Gaussian 
noise vectors with zero mean and covariance matri- 
ces of Q and R. The state estimate of this system 
becomes 

x(t)   =   J4x(t)+P(t).ff'fl-1[y(i)-.Hz(t)](34) 

where P(t) is the state estimate covariance defined 
by the differential equation 

P(t)   =   AP(t)+P(t)A'+Q-P(t)H'R-lHP(t) 
(35) 

To include a multisensor suite of N3 sensors in 
the tracking equations, concatenate the measure- 
ment vectors, creating 
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Figure 7: The non-decreasing region of the discrete 
system response is longer than that of its 
equivalent continuous system (C = —0.013). 

Y{t)    = 

H   = 

R   = 

2/2« 

H,{t) 
H2(t) 

HN.(t) 

[Ri] 

(36) 

[A] 

[*».] 

in 
Applying these matrices to Equation (35) results 

P(t)   =   AP(t)+P(t)A'+Q-P(t)H'R-lHP(t) 

=   AP{t)+P(t)A'+Q- 

P(t) (f.HlR-'ä) P(t)   (37) 

Thus, the covariance of the multisensor Kalman- 
Bucy filter can be represented by an equivalent 
single-sensor Kalman-Bucy filter with measurement 
matrix H and a measurement noise covariance ma- 
trix R. 

The simplest higher-order system to analyze is 
the diagonal system, in which each state is orthogo- 
nal to the other. The system matrix is then 

A   = 

-ax 

-a2 

-On 

(38) 

The assumption of whiteness of the noise will en- 
sure that the noise covariance matrices are diagonal 
as well. The orthogonality includes the measure- 
ment matrices Hi, which must consist of subsets of 
the n orthogonal eigenvectors that define the state 
space. It is then easy to show that under these con- 
ditions the covariance matrix is diagonal, with the 
diagonal entries defined by 

Pu(t)   =   -2o,P(i)« + Q«- (Pu(t))2 

(H'R-iH)i{ 

*' = !>•••, n (39) 

which, as shown in previous sections, has a closed 
form solution similar to that shown in Equation (7). 
Thus all of the conditions derived in this paper will 
hold for the eigenvalues of a orthogonal state space 
system. Diagonal discrete-time systems can be eas- 
ily shown to decompose into a series of scalar equa- 
tions as well. 

Analysis of more general systems is much more 
complicated and is subject of future work. We 
are currently using a linear formulation of the 
continuous-time Ricatti equation to derive a closed 
form solution to a more realistic class of tracking 
models that are not diagonal in nature. We are 
currently working on a very simple block diagonal 
model, where each block is a second-order integra- 
tor observed by a scalar measurement. Although the 
results of our analysis will not be extendable to non- 
block-diagonal systems, a large number of tracking 
situations can be represented using this model. Fur- 
thermore, the techniques developed to analyze this 
model will be applicable to other systems. 

7- Conclusion 
The delay of the execution of sensor requests 

when tracking continuous-time scalar or diagonal 
target models can reduce the performance of the 
surveillance system. However, the effect of such 
a delay is reduced as time increases (and the co- 
variance of the system converges to a steady-state 
value). Furthermore, when the actual delay is un- 
known or varies over time, overestimating the de- 
lay will produce smaller covariance prediction errors 
than underestimating the delay. 
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Based on these observations, strategies to reduce 
the effects of delay on covariance estimates could in- 
clude reducing the scan rate of the controller, i.e. 
allowing the Kaiman filter to run longer in between 
changing the sensor combination. However, this 
strategy is limited by the desired responsiveness of 
the system. If the scan rate of the controller is re- 
duced, the time required to change the target covari- 
ance increases. Another strategy is to consistently 
overestimate the delay when attempting to predict 
the covariance. The drawback to this method is that 
it increases the computational demand on the con- 
troller. 

The analysis of the effect of delay on the discrete- 
time Kaiman filter is more complicated due to the 
lack of a closed form solution to the difference equa- 
tion. The attempt to create a continuous-time sys- 
tem that is equivalent to the discrete-time system 
has been partially successful. While the trends of 
the discrete system match those of its continuous 
equivalent, time periods when the error due to delay 
does not decrease monotonically last longer for the 
discrete time system. 

NAECON, vol. 1, pp. 606-613, May 1994, Dayton, 
OH, IEEE: New York, NY. 

[5] J. Nash, "Optimal Allocation of Tracking Re- 
sources," Proceedings of the 1977 IEEE Conference 
on Decision and Control, vol. 1, pp. 1177-1180, De- 
cember 1977, New Orleans, LA, IEEE: New York, 
NY. 

[6] A. Ray, L.W. Liou, J.H. Shen, "State Estima- 
tion Using Randomly Delayed measurements," Jour- 
nal of Dynamic Systems, Measurement, and Con- 
trol, vol. 115, pp. 19-26, March 1993. 

[7] W. Schmaedeke, "Infonnation-based Sensor 
Management," SPIE Proceedings, vol. 1955, April 
1993. 

8. Acknowledgments 
This work was supported in part by the Data Fu- 

sion Corporation, the Colorado Advanced Software 
Institute, an Office of Naval Research Young Inves- 
tigator Award (Grant N00014-97-1-0642), and a Na- 
tional Science Foundation Early Faculty CAREER 
Award (Grant CMS-9625086). The authors would 
also especially like to thank Woody Kober and John 
K. Thomas of the Data Fusion Corporation for sug- 
gesting this area of research and for their feedback in 
the development of the sensor selection algorithms, 
and Nathan Baltz of the University of Colorado for 
his editorial comments. 

References 
[1] Y. Bar-Shalom and X. Li. Estimation and 
Tracking: Principles, Techniques, and Soßware, 
Artech House, Boston, 1993. 

[2] S.B. Chang and M.H. Perng, "State Estima- 
tion from Incremental Sensor Data Corrupted by 
Track Miscounts and a Detection Delay," IEEE 
Transactions on Control Systems Technology, Vol 4. 
no. 1, pp. 65-67, January 1996. 

[3] M. Kalandros and L. Y. Pao, "Controlling Tar- 
get Estimate Covariance in Centralized Multisensor 
Systems," Proc. of the 1998 American Control Con- 
ference, Philadelphia, PA, June 1998. 

[4] S. Musick and R. Malhotra, "Chasing the Elu- 
sive Sensor Manager," Proceedings of the IEEE 1994 

1135 



Subin'tizcl    m    May   ZOoo    -6b    Au-kmah'ca , 

Varying Rate and Resolution to Control Estimation Error 
Covariance in Centralized Target Tracking Systems 

L. Y.PaoandN. T.Baltz 
Electrical and Computer Engineering Department 

University of Colorado 
Boulder, CO 80309-0425 

Fax: 303-492-2758 
Email: pao@colorado.edu & baltzn@colorado.edu 

Abstract 

This paper provides an analysis of error covariance control techniques for allocating sensing 

resources in multisensor target tracking systems. We focus on tracking one target using multiple sensors 

each having different rates and resolutions. The algorithm we develop for allocating sensing resources 

manages the rates and resolutions at which sensor information is processed. An elliptical annulus 

described by two covariance matrices is used to control the prediction and update covariances in the Kai- 

man filter. 

Keywords: Covariance Control, Rate, Resolution, Sensor Management, Tracking 

1. Introduction 

In many multisensor surveillance systems, sensor management techniques are needed to balance 

tracking performance with system resources (Popoli, 1992). Rate and resolution are two fundamental 

parameters that can be used to affect the tracking performance in such systems. While most sensor man- 

agement techniques have considered rate and resolution separately (Singer 1970, Nash 1977, Van Keuk 

1978, Schmaedeke 1993, Schmaedeke & Kastella 1998), we developed a sensor management scheme that 

varies both rate and resolution in the Kaiman filter. We define the resolution as a matrix product involving 

the inverse of the measurement covariance matrix and the measurement matrix. The rate is simply the 

inverse of the sample period. 



Sensors generally have a number of different parameters that affect rate and resolution. For instance, 

when managing a monopulse Electronically Steered Array (ESA) radar some parameters we may be con- 

cerned with are radar beam shape, electromagnetic emissions, average energy, average power, modulated 

waveform, modulating waveform, carrier frequency, pulse period, and sample period (Blair & Watson 

1996). Although not all radars can change these parameters in real time, at some point in the design pro- 

cess these parameters must be chosen. Other noncontrollable parameters that affect detection and estima- 

tion performance are Radar Cross Section (RCS) and channel noise. These parameters together determine 

the detection and estimation performance in a tracking system. 

An infrared CCD array is an example of a passive, narrow band or broadband, parallel sensor. Param- 

eters associated with this sensor are its pixel frequency response, image resolution, and sample rate. After 

the CCD array is designed, the frequency response and image resolution are generally fixed, while the 

sample period or frame rate can be a variable parameter depending on the hardware. Quantization effects 

such as finite image resolution and measurement or channel noise affect subsequent estimates. 

Several sensor management systems have been proposed for centralized systems (Nash 1977, 

Schmaedeke 1993) based on the optimization of a cost function generated using target priority, the cova- 

riance of each target state estimate, and the cost of using specific sensor combinations. Two problems 

associated with using these techniques are that 1) using target priority is a coarse adjustment for main- 

taining tracking performance, and 2) these methods do not consider using sample rate to maintain track- 

ing performance. 

The drawbacks of the above approaches in addressing tracking performance motivated the develop- 

ment of algorithms that can obtain specific bounds on estimation performance. These methods are based 

upon maintaining desired covariance goals (Kalandros & Pao 1998, Pao & Baltz 1999). Although using 

all the sensing resources will obtain the best state estimates this requires increased computational 



resources and does not allow for sensing resources to be applied to other targets or sensing tasks. Using 

the desired covariance goals we are able to develop algorithms that use both sensor rate and sensor reso- 

lution to jointly optimize the target error covariance. In this approach, the algorithms are implemented 

using two functional blocks that separate the sensor manager into a covariance controller, which selects 

the sensor combinations and sample rate based on their ability to achieve the covariance goals, and a sen- 

sor scheduler that prioritizes sensing actions and executes them as time allows. The sensor scheduler can 

cause low priority actions to be delayed until future scans or may be dropped altogether. The covariance 

controller maintains the covariance level of each target estimate to within some desired level while reduc- 

ing system resource demands. 

A block diagram of a centralized tracking system is shown in Figure 1.1. This model shows the differ- 

ent components of the system including sensors along with signal and information processors and a 
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Figure 1.1 Components of a Centralized Tracking System 



sensor manager. This block diagram illustrates the sensor control problem, where the sensor manager 

uses rate and resolution to maintain the information matrices P-,(//2+ j |?n) within an elliptic annulus 

described by a desired update information matrix and a desired prediction information matrix given by 

P^' (tn) and P^(f„), respectively. The desired matrices for each target are chosen so that they are 

related as 

*jl **£*** dp** du (i.i) 

Both information and covariance matrices can be illustrated using ellipses or ellipsoids. We define the 

ellipse or ellipsoid as the set of points that satisfy ellipse{V) = {*;:x:TP_1:t = 1}. Some typical desired 

information and covariance goals in 9l2 are shown in Figure 1.2a and Figure 1.2b respectively. The 

desired update information and update covariance are shown using solid thick lines. The desired predic- 

tion information and prediction covariance are shown using thin solid lines. 

Desired information annulus Desired covariance annulus 

ellipse(Pdu) 

-2   -1 0      1 
(b) 

Figure 1.2 Elliptical annulus for specifying desired tracking performance 

Figure 1.3 is a block diagram of the sensor manager. The inputs are the desired update and prediction 

information matrices P^('„) and P^(f„) respectively, as well as the predicted information matrix 

p_1 ('« + 11U for eacn target- These matrices are used to compute rate T(tn) and resolution T(t„) for each 



target, where T(tn) is a set of sensors with associated measurement covariances and measurement matri- 

ces. 

The sensor scheduler is responsible for applying the rate and resolution signals to the sensor time 

lines. When the sample periods for each target are not commensurate then sensors can not be scheduled at 

the same time causing disturbances in our ability to control the covariance. Using this methodology for a 

Sensor Manager allows us to develop the Covariance control techniques independent of the scheduler. We 

therefore focus our efforts on tracking a single target and treat the scheduler as a black box which causes 

r('„) &'»>. %^ 
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Figure 1.3 Sensor Manager Block Diagram 

delay and drop out. 

This paper is organized as follows. Section 2 reviews the equations for the Kaiman Filter. Section 3 

develops open loop and closed loop sensor allocation strategies. The sensor allocation strategies are used 

to develop specific algorithms. Issues of sensor delay and sensor drop out are discussed in Section 4. In 

Section 5, the results of simulations are used to illustrate how the algorithms are applied to a tracking sys- 

tem. Finally, Section 6 gives some conclusions and discusses issues for further investigation. 



2. Kaiman Filter 

There are M sensors each capable of taking measurements of length k(<N, V/ e {1,..., M}, with N 

the length of the state vector. Assuming a single target and simultaneous reception of all measurements, 

the measurement vector, the measurement matrix, and the measurement noise components are 

y{tn) =   [yj{tn) ... ylitjjf (2.1) 

C(,„) = [cjitj ... CT(0]T (2.2) 

v(tn) = [vj(tn) ... vl(tn)\T (2-3) 

respectively. When the measurement noise terms across sensors are uncorrelated, the covariance has a 

block diagonal structure, R(t„) - blockdiaglRx(tn) ... RM(/n)l. 

The state and measurement equations are 

x{tn + x) = A(tn)x(tn) + B(tn)w(tn) (2.4) 

y(tn) = C(t„)x(tn) + B(tn)v(tn) (2.5) 

respectively, where A(/„), B(tn) e^x\ C(tn) e W *N, and L = ^ , kt. The noise terms 

B(tn)w{tn) and D(tn)v(tn) are zero mean, with covariances B{tm)E[w(tm)wT(tn)]BT(tn)=Q(t „)§„_„ 

and D(/m)£[v(r/B)v
T(/;i)]D

T(fll) = R(tn)dm_n, respectively. With these definitions the prediction and 

update equations of the Kaiman filter are (Bar-Shalom & Li, 1993) 



Prediction Equations: 

*C.|'i.-l)  = A('„)*('„-l|'„-l) 

H^tn-O  =  C(tn)x(tn\t„_x) 

P('«K->) = A(gP(^_,|/fl_,)AT(0 + Q(0 

(2.6) 

(2.7) 

(2.8) 

Update Equations: 

p-'cjo = p-,(^|^-i)+cT(gR-1(/„)c(/„) (2.9) 

(2.10) 

(2.11) 

where the carets (A) denote state and measurement estimates. The sensor information matrix R ' (tn) and 

the measurement matrix C(tn) together define the sensor resolution CT(/n)R
_1 (tn)C(tn). When only a 

subset of sensors take mesurements we can model this using a sumation as given in (2.12) 

Ct(tn)R-Ht„)C(tn) = M 
T k M 

Cr, Rf1 
K

- 
Cr, 

- S C7R71C/ (2.12) 

where T = {T,,..., T^} is a subset of sensors of size |r| = K<M. The prediction and update equa- 

tions from (2.6) to (2.11) define what is called the information matrix filter (Bar-Shalom & Li, 1993) 

because it uses the Fisher information in (2.9) to compute the Kaiman gain in (2.10). This recursion is 

one form of the Kaiman filter. The state update in (2.11) can also be expressed as 

*('„!>„) = (I-P(^|OCT(OR-1(OC(U)A(g^„-1U„_,) + P(^|OCT(^)R->(Oj;(0(2.13) 



which after simplification takes the form 

*(MU = E(Oi(^_,|^_,) + K(^(g (2.14) 

where E(tn) = (I-P(;„|OCT(OR-i(f,,)C(>,,))A(0 and K(/„) = J>(tn\tn)C*(tn)R-Htn). The 

process noise covariance Q(tn) and gain B(/„) do not appear directly in (2.13). The matrices Q(/„) and 

B(tn) are subsumed into the state error covariance. This is a "coefficient" adaptive filter because the gains 

between the previous state estimate x(tn_, \tn_,) and the new measurement y{tn) change based upon 

the state error covariance V(tn I tn). A "model" adaptive filter would change any of the matrix coefficients 

A(tn),B(tn),C(tn),orT)(tn). 

3. Sensor Allocation 

The covariance control methods developed here build upon some of the techniques developed in 

(Kalandros & Pao 1998, Pao & Baltz 1999). The desired matrices have several interpretations. The first 

interpretation is that we try to maintain the state error covariance for each target inside the elliptical annu- 

lus. This can be expressed as 

*dp(tn)*ntn+\\tn)>Vdu{tn) (3.1) 

These matrix bounds restrict the prediction and update covariance to be inside an elliptical annulus. This 

requires computation of eigenvalues of the matrix differences so that the matrix inequalities can be tested. 

The second interpretation treats each desired covariance as an upper bound on the prediction and 

update covariances. This interpretation is desirable because it insures that the error covariances are less 



than the desired, i.e. more target information than desired. These conditions on the prediction and update 

covariance are 

V,)**('„+i|',.> 
**(',.) *pC.|'i.) 

respectively. The desired update and prediction covariance (information) matrices are treated as upper 

bounds (lower bounds) on the error covariance (information update) matrices. The desired information 

update matrix is used with (2.9) and (2.12) to compute the optimal sensor resolution (set of sensors), and 

the desired prediction covariance matrix is used with (2.8) to compute the optimal sampling rate. All sen- 

sors have a minimum sample period determined by sensor limitations and possibly communication and 

processing delays. We therefore specify a minimum sample period Tmin for each sensor. 

A fundamental question is whether the sensing resources can achieve the desired covariance goals. 

Given system coefficients A(T), Q(T), C,, R,"1, i = 1,..., M, and constant desired information matri- 

ces Y-dl{tn) and Vdp(tn) with P(/„|/w) < Vdu(t„) and JH =  ]T CTR^C,., then if the nominal sample 
j'e r 

period and nominal sensor resolution are given by 

Tnom = arg min det[Fdp(tn)-A^T)Pdu(tn)A(T)-Q(T)] = 0 

T>0 
(3.3) 

respectively, then T < Tnom and J"1 > J-]ffl will insure that Tdp(tn) > P(/„ + T\t„) and 

Vdu(tn) > P(tJtn) for all tn, which are conditions imposed by (3.2). This means that when the sample 

period is less than the nominal sample period and the sensor resolution is greater than the nominal resolu- 

tion the covariance goals will be met for all tn +1 > tn. 
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The positive definite matrix difference in (3.4) is referred to as the nominal sensor resolution because 

from (2.9) we can form the matrix difference P_1 (tn| tn)-?-] (tn | tn _,) which equals the sensor resolu- 

tion. Another positive definite matrix difference can be defined using covariance matrices rather than 

information matrices. This matrix is defined as Knom = Vdp(tn) - ?du(t„) ■ This matrix along with the 

nominal sensor resolution will be used in the following section. 

3.1 Rate and Resolution 

The ellipsoids of the information matrix P-1 (tn\ tn) in (2.9) increase monotonically with measure- 

ments from additional sensors. Figure 3.1a illustrates a set of monotonically increasing ellipses for infor- 

mation matrices in 9?2 x 2, where the sets St have the properties S] c S2 c ... c 5;- and |.S;| = / (|5(| 

denotes number of sensors in the /th set). The innermost ellipse in Figure 3.1a corresponds to the ellipse 

of the information update using only one sensor. Each successive ellipse proceeding outwards is a result 

of using one additional sensor, with the outermost ellipse using six sensors. 

P(t„+0|t„) 

v\Sj) 

Figure 3.1 (a) Ellipses representing matrices achieving higher resolution (smaller covariance) as the 
number of sensors increases, (b) prediction error covariance ellipses as a function of the sample period. 
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The ellipses of the prediction covariance in (2.8) may or may not increase monotonically with the sample 

period T. Figure 3.1b shows non-monotonically "growing" ellipses where A(T), Q(T), and P(f„|f„) 

are given by 

MT) 
1 T 
0 1 

,Q(T) = a2 P/3 T2/2 

T2/2    T 
>P('„K) = 

4 2 
2 3 

(3.5) 

As illustrated in Figure 3.1b, the prediction covariance may decrease in some directions as the sampling 

period is increased. The innermost ellipse shows the prediction covariance when the sample period is Os. 

The sample period increases by 0.55 for each successive ellipse proceeding outwards, with the outermost 

ellipse having a sample period of 2.5s. 

3.2 Adjusting Covariance Goals 

There are three different paradigms we have used for changing the information and covariance goals. 

Through choice of the update and prediction matrices we can influence how sensing resources are alo- 

cated in terms of rate and resolution. These paradigms for choosing the information goals provide a 

framework for changing the rate and resolution. However, because the prediction covariances and infor- 

mation updates are not independent processes, choice of one parameter will have consequences on the 

choice of the other parameter. 

When we want & fixed resolution but variable rate then we keep the nominal sensor resolution, J nom 

constant. Given a desired update and prediction information matrix we can keep the desired resolution 

constant and increase the rate by adding a positive definite matrix to both desired information matrices. 

For example, if we let the prediction information matrix and update information matrix equal 

P^(^+i) = P^(0 + AandP^(?»+i) = P^(O + AresPectively'withA>0'thenthiswi11 

achieve obtaining better estimates while keeping the nominal sensor resolution constant. 
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When we want a fixed rate but variable resolution then one method is to keep the matrix difference 

Knom constant while increasing or decreasing each desired covariance matrix by the same positive defi- 

nite matrix. For example, to increase the sensor resolution while maintaining the same desired rate the 

new desired prediction and update covariances are chosen to be P^f,, +1) = Prfn(^)- A and 

Prfw(/„ + ,) = P^C^n) -A, respectively where A > 0. This reduces each desired covariance matrix by the 

same amount so that the annulus defined by the covariance difference is constant. 

Although the matrix difference Knom remains constant a better method for choosing new covariance 

goals for maintaining a fixed rate is to let P^M(f„ +1) = ?</„('„) -A and 

VdP(
fn + i) = *Vn) ~ AT(Tnom)AA(Tnom) where Tnom is the solution to (3.3) at time /„. Since 

j 
A (Tnom) A A (Tnom) may or may not be positive definite we must always check the condition in (1.1). 

Substituting the new desired covariance goals into (3.3) we get 

f(T) = det[Pdp(tn+])-AT(TJFdu(tn+l)MT)-Q(T)] 

= det[?dp{tn) - AT(T)Pdu(tn)A(T) - Q(T) + AT(T)AA(T) - AT(Tnom)AA(Tnom)] 

Since the last two matricies become the zero matrix at T = Tnom, Tnom is forced to be a root oifij). This 

method for choosing the desired covariance goals will be shown to maintain a more constant sample rate 

compared with the first method "constant rate" method which fixes K„    . 1 nom 

Computation of the nominal rate and resolution are illustrated using the ellipses shown in Table 1. 

Using the nominal rate and resolution to select sensors and choose a sample rate is a one time computa- 

tion and is an open loop covariance control scheme„This technique is good when we have limited compu- 

tational resources and insures that in steady-state that the covariance goals will be achieved. When there 
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are multiple targets the problem is more complicated because sensing resources must then be allocated 

among different targets. 
Table 1: Methods for Choosing Desired Matrix Goals for Maintaining a Nominal Rate or Resolution 

Desired Information 
Matrices 

P^W 

*dp'HQ 

-1/ PAU-PA'W+A 

Pdp-l(tn+}) = Fdp-l(tn) + A 

Desired Covariance 
Matrices 

*du(Q 

v»> 

P</«(^+;) = P^«) + A 

P</A+;> = IV'«> + A 

Desired Covariance Matricies 
with Modified P £= 

*,&('») 

V«) 

P<4,('»+/) = *<*,('») +A 

p^(^+7)=P4,(U+AT(r0)AA(r0) 

3.3 Open Loop Covariance Control Strategies 

Control over both the sampling rate {T A) and sensor resolution (CTR_1 C) provides two methods for 

maintaining the desired covariances. One method fixes Tand then solves for an optimal CTR_1 C which 

represents the best subset of sensors to use from the available suite of sensors. The other method is to fix 

the sensor resolution CTR_1 C and then solves for an optimal T. These covariance control techniques are 

outlined in the following two subsections. 
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3.3.1 Steady State Covariance Control Using Sensor Resolution 

Substituting the inverse of the information update from (2.9) into (2.8) and suppressing the time 

dependence on the matrix coefficients we get the following matrix Riccati equation (Bittanti, Laub, & 

Willems 1991) for the propagation of the prediction covariance: 

P('w+,|0 = Q + AP^.^AT-AP^^ 

Using this formulation we can find the theoretically optimal sensor set for maintaining the desired covari- 

ance given a fixed sampling rate. We first choose a nominal sample period T, such that the state transition 

matrix A(7) and process noise covariance matrix Q(7) are held constant. If the full state vector is mea- 

sured such that C = I, we can solve for an optimal measurement covariance R or sensor resolution R"1 

corresponding to the desired covariance. Now let the steady state prediction error covariance equal the 

desired prediction error covariance P(*„+iU„) = ¥(tn\tn_l) = Vd. 

Ydp = Q + AP^AT-AP^C^R + CP^CTr'CP^AT 

APrfp(R + P,,)-1 Prf,AT = Q + AP^ - Vdp (3.8) 

(R + Prfp)-1 = (AP^)-'(Q + AP^AT--P^)(APrfp)-T 

Computing the inverse of the last equation in (3.8) we have the optimal covariance denoted by R0 

R0 = P^A^Q + AP^AT-P^-iAP^-P^ (3.9) 

Given a limited set of sensors, the desired prediction covariance Pd must be chosen such that R0 is posi- 

tive definite. If the desired covariance results in an R0 that is not positive definite, then the sampling rate is 

not adequate for maintaining the desired prediction covariance matrix. When faster convergence of the 

covariance to steady-state is desired, then the sample rate may be increased so that faster convergence is 

achieved. Once the optimal measurement covariance is found, a search over all possible sensor combina- 
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tions is performed to determine which set of sensors yields a combined R or R' that is "closest" (accord- 

ing to some metric) to R0 or R0'', respectively. 

When C e W x N, p < N, the full state vector is not measured and we can not compute the required 

inverses to solve for R,. We can, however, use the pseudoinverse to get an estimate of the optimal mea- 

surement covariance matrix. Let M = AP^CT and its pseudoinverse be M+ = (MTM)-'MT. Using 

the pseudoinverse, the optimal measurement covariance that gets us closest to the desired prediction 

covariance is 

R0 = (Mt(Q + AP^AT-P^M")-! -CP^CT (3.10) 

The mapping in (3.10) is from Fdpe 5R"X" to R0 e W
x". This allows us to solve for p(p + l)/2 

parameters in R0 to maintain a desired covariance matrix Fdp with N(N + 1 )/2 parameters. 

Given a fixed sample rate, the measurement resolution can be used to control the covariance. The 

above technique is an open loop covariance control scheme where an optimal set of sensors is computed a 

priori that drives the steady state prediction covariance close to the desired prediction covariance. 

Figure 3.2 shows the convergence of the error variance for a single state system. The optimal sensor reso- 

lution is used so that we obtain perfect convergence to the desired prediction variance. 
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Error Variance 

Sensor Rate: T =0.2 
s 

Desired Sensor Information: r~1=0.0064103 

Sensor Rate: T =0.2 
s 

Desired Prediction Variance 

Desired Sensor Information: r  =0.026316 

10 
time 

15 20 25 

Figure 3.2 Variance convergence using variable resolution 

Notice how the peaks of the sawtooth waveform converge to the desired prediction variance. At T = 10s 

the desired prediction variance is increased to 4. The sample rate stays constant throughout the entire sim- 

ulation. When the desired prediction variance is increased, the optimal solution for the resolution 

decreases. The new optimal sensor resolution is used and causes the prediction variance to converge to 

the desired prediction variance at steady state. 

3.3.2 Steady State Covariance Control Using Sensor Rate 

Given a fixed sensor resolution (subset of sensors), the sample rate can be used to control the covari- 

ance. We use the same equation as in (3.7), however we try to solve for the optimal sample period Tthat 

drives the steady state prediction covariance to the desired prediction covariance. Using the same scalar 
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system as in the previous example except with a fixed set of sensors we obtain the Riccati equation given 

by 

/>('«+ll'i.) 
a* 

+ q(T) (3.11) 

For a scalar system the optimal sample period can be found directly without the use of the determinant for 

the minimization in (3.3). In this example we have 

a = l,q(T) = G2T,c = 2 

r~x = C'fR-'C = 0.03125 

V«+i|'«>-2'0<'<10 
(3.12) 

*V',,+ i|'«> = 4'10<'<25 

Figure 3.3 shows the convergence of the error variance for this scalar system. The same desired predic- 

tion variances are used in this simulation as the one shown in Figure 3.2. 

03 o c 
•§4 
> 
S 
a) 3 

Error Variance   Desired Sensor Rate: T,=0.88889 

Sensor Information: r  =0.03125 

Desired Sensor Rate: T =0.23529 s 

1 h   Sensor Information: r"1=0.03125 

Desired Prediction Variance 

P*('i.) 

10 15 
time 

20 25 

Figure 3.3 Variance convergence using variable rate 
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At T = 10s, the desired variance is increased to 4. The sensor resolution stays constant throughout the 

entire simulation. When the desired variance is increased, the optimal solution for the sample rate 

decreases. The new sample rate is used and causes the prediction variance to converge to the desired pre- 

diction variance at steady state. 

3.4 Closed Loop Covariance Control Strategies 

The open loop covariance control techniques have low computational complexity and allocate sensing 

resources so that the steady-state desired covariance goals are achieved. However, faster convergence of 

the error covariance to the desired covariance goals can be achieved if feedback from the Kaiman Filter is 

used to allocate sensing resources. In the following development of closed loop covariance control tech- 

niques, the rate and resolution are assumed to both be variable parameters. 

3.4.1 Resolution Computation 

We considered a number of functions and metrics (Baltz 1999) and found that the trace of the differ- 

ence between actual and desired information matrices (3.13) to yield good results in the sensor selection 

process. 

g(T) = traced {tn\tn)-V-dl(tn)) (3.13) 

The resolution (set of sensors) is computed by minimizing the function g(T) 

ro(tn) = argmin g(T) 
r (3-14) 

where T is a subset of the available sensors and P_l(?„|/„) is given in (2.9) with the summation in (2.12) 

over the sensors in T. Since we treat P^ (tn) as a lower bound, we also impose the condition that the 

diagonal values of the matrix difference in the argument of the trace be greater than or equal to zero, 



19 

which is a neccasary but not sufficient condition for positive semidefiniteness. Define the argument of the 

trace to be 

H(D - P-'^IO-PjäC.) = P-,(^|^.,)+ I CjR7'Cy-P^(^) (3.15) 
ye r 

With the trace function, the sets of sensors that yield negatives on the diagonal of H(r) can immediately 

be removed from the search set because a negative diagonal element guarantees at least one negative 

eigenvalue. The number of possible sensor sets T is 2M, where Mis the number of sensors available. The 

upper bound on the number of sensor combinations grows exponentially with additional sensors. Because 

of this exponential growth it is important to find computationally efficient functions and efficient search 

strategies for finding the optimal set of sensors (Baltz, 1999). 

While eliminating these sets reduces the search size, having positive diagonals does not guarantee that 

the difference H(r) will be positive definite. To provide better covariance control, with additional com- 

putation, we can also check the condition 

which will insure that the information update is greater than the desired information update. 

3.4.2 Rate Computation 

The covariance matrix of the prediction state estimate may also be controlled through choice of the 

sensor sample period. The function we minimize to solve for the optimal sample period is 

f(T) = det(Fdp(t„)-F(tn + T\tn)) (3.17) 

(3.18) 
T0(t„) = min arg f{T) = 0 

r>o 
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where P(/„ + T\tn) is given in (2.8) and T0 is the optimal sample period. The function f(T) will always 

have at least N real roots because the matrix difference in the determinant is symmetric. Denoting the 

roots of f(T) as Zj, we let the optimal sample period be T0 = min(Zj) > Tmin. When min(zj) < Tmin, 

then we let TQ = Tmin. In this method, after the state estimate covariance has been updated, the optimal 

sample period is then determined by analyzing the difference between the desired and prediction covari- 

ance as in (3.15). This optimization can be performed on a per-sample basis to obtain the best covariance 

control or performed at a lower rate to reduce computational complexity, but this would also reduce the 

sensor manager's ability to control the covariance. 

The prediction covariance is V(tn+l \tn) = A(T)?(tn\tn)A
T(T) + Q(T) where matrices A(T) and 

Q(7) are functions of the sample period T = tn+x-tn. Define the argument of the determinant to be 

M„(n = Vdp(tn)-¥(tn + T\tn) = Pdp(tn)-A(T)F(tn\tn)A^(T)-Q(T) (3.19) 

where MN(T) e SiNxN and the goal is to determine Tsuch that MN(T) = 0 or is as "close" to the zero 

matrix as possible. The characteristic equation of MN{T) is 

N N 

f{s) = det(sl-MN(T)) =   ]T bk(T)sk = J] (s-Xk(T)) (3.20) 

where the eigenvalues are all real because MN(T) is symmetric. Letting s = 0 we have 

bo(T) =  IT -^k(T) • The roots of the polynomial b0(T) correspond to the values of Tthat make the 
k = 

product of the eigenvalues equal to zero. The b0(T) polynomial for a discretized-continuous model (Bar- 

Shalom & Li, 1993) has degree N2. 
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When the update covariance has the property Vdp{tn) > P(f„ | tn), we can always find a positive value 

for the sample period. Figure 3.4 provides a graphical argument of why there must exist a positive value 

of T. The innermost ellipse represents the update covariance and the dark solid ellipse represents the 

desired prediction covariance. Given Vdp{tn) > V(tn\tn), as T -> « the ellipse of V{tn + T\tn) can either 

-1 

-2 

-3 

P('J'„)    / 

T>(tn+0.13\tn) 

P0„+1.33|O 

P^C») 

-6 

Figure 3.4 Two solutions for the sample period when the desired prediction covariance is greater than the 
update covariance 

always stay inside of Vdp{tn) or eventually equal or exceed Vdp(tn). Since V(tn + T\tn) increases without 

bound as T -> °°, then it must exceed P^(f„) for some positive T. At 7=0.13 seconds and 7= 1.33 sec- 

onds, the prediction covariance ellipse is tangent to the desired ellipse. These values of Tare thus two 

positive roots of the polynomial b0 (T). The minimum positive root of b0 (T) is the largest sample period 

Tfor which V(tn + T\tn) remains completely within the ellipse of P^(*„), in this case 0.13 seconds. 
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Depending on whether the discretized-continuous model or the direct-discretized model (Bar-Shalom 

& Li, 1993) are used will determine the coefficients of the polynomial. These models differ in the 

assumptions made on the continuous white noise input to the target dynamics. The discretized-continuous 

model assumes the white noise to be continuous and the direct-discretized model assumes the white noise 

input to be piece-wise constant during each sample interval. Using these two models, let us examine the 

equations for first and second order systems. Let each element of the desired prediction covariance be 

[PdMn)]r = dj- and each element of the update covariance be [f(tn\tn)].. = ptj. 

For a first order system using the discretized-continuous model to express the process noise covari- 

ance we have 

M,(7) = du-a2
Pu-Ta2 (3.21) 

where A( T) = a and Q( T) = Tc2. Setting M, (T) equal to zero and solving for the sample period we 

get 

du -a2pu 
T0 = 2 (3-22) 

Using the direct-discrete model to express the process noise covariance we have 

M,(r) = du-a2pu-T2c2 (3.23) 

where A(T) = a and Q(T) = T2 a2. Setting M,(T) equal to zero and solving for the sample period 

we get 

(dn -a2pu\V2 

To = {        g        j (3.24) 

The solutions (3.20) and (3.22) for the optimal sample periods in the two noise models are related by the 

square root. 
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Using a discretized-continuous model with a second order system tracking a target's position and 

velocity in one coordinate, the state transition matrix and process noise covariance matrix are 

A(7*)- 1 T 
0 1 

,Q(T) = a = rr2 r
3/3 T2/2 

T2/2    T 
(3.25) 

respectively. This model describes a white noise acceleration model also called a Wiener process velocity 

model (Bar-Shalom & Li 1993). The matrix difference is then 

M2(D = 
du dn 

dl2 d22_ 
- 1 T 

0 1_ 
P\\ Pl2 

P\2 P22_ 

1   0 
T 1 

-a2 r3/3 T2/2 

T2/2    T 
(3.26) 

The determinant is f(T) = det(M2(T)) = c4T
4 + c3T

3 + c2T
2 + clP +c0 = 0 where the coeffi- 

cients are 

(3.27) 

c3  =  2P22a2 ~ 2d22°2 

c2 = dn<52 + pno2 - p22d22 

c, = 2dX2p22-2pnd22 +puc2-duc
2 

c0 = dud22-p
2

2-d2
2 + 2dnpn-pud22-dup22+pup22 

Since the matrix M2(T) is symmetric it has at least two real eigenvalues which implies that /(T) must 

have at least two real roots. The smallest real root of f(T) is the optimal sample period. The formulas for 

the roots of the quartic polynomial can be found in (Weisstein 1999) or computed numerically. 
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Using a direct-discrete model with a second order system tracking target position and velocity in one 

coordinate, the state transition matrix and process noise covariance matrix are 

MT) = 1 T 
0 1 

,QCD = cr = rr2 r
4/4 P/2 

7*3/2   T2 
(3.28) 

With these coefficients the matrix difference is 

M2(T) = 
du dn 

dX2 d22 

1 T 
0 1 

P\i P\2 

P\2 P22 

1 0 
T 1 

-rr2 7-4/4 r3/2 

7-3/2   7-2 
(3.29) 

The determinant is f(T) = det(M2(T)) = c4T
4 + c3P + c2T

2 + c, P + c0 where the coefficients are 

C4 = 4°2(P22-d22) 

c3 = o2(d]2+pl2) 

c2 = a2(Pu-du)-p22d22 <3-3°) 

c, = 2dl2p22-2pnd22 

c0 = dnd22-p
2

2-d2
2+2dnPn-pnd22-dnp22 + pup22 

Again, there are at least two real eigenvalues of M2(T) that can be computed analytically or numerically. 

These same techniques can be extended to higher order models by using the appropriate matrices (Baltz 

1999). 

Once the nominal sample period rnom has been calculated for any of the previous models. 

4. Sensor Delay and Sensor Dropout 

The sensor scheduler and specific sensors can cause adverse effects on the ability to control the cova- 

riance. In this section, we briefly discuss two such effects. 
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4.1 Sensor Delay 

The first effect is sensor delay. There are two types of sensor delay. The first type of delay is mea- 

surement delay. This happens when a sensor either executes or obtains a measurement but the down 

stream processors do not receive the measured data until some later time. This causes the measurement to 

be delayed in time. The other type of delay happens when a sensor scheduler obtains a sensor request at 

time t0 but does not execute this request until a later time tx > tQ. 

Figure 4.1 shows four sensor time lines each having different delay properties. Each sensor has the 

same sample rate and each sensor receives measurements at the same times. The pluses (+) on each sen- 

sor time line indicate when the sensor manager requests a measurement, the dots (•) indicate when the 

measurement execution starts, and the circles (o) indicate when the measurements are received. 

S4 

S3 
o 
CO c 
CD 
CO 

S2- 

S1 

— + .... 

I I            I            I 1 ■ 1 

+   Request 
•    Execute 
o   Receive 

••• o— 

■■•■•••- 

1              1              1 

8 10 
time, t 
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Figure 4.1 Illustration of measurement delay and sensor request delay 

The first sensor S1 has neither measurement nor sensor request delay. The second sensor S2 has measure- 

ment delay but no sensor request delay. The third sensor S3 has no measurement delay but has a sensor 

request delay. The fourth sensor S4 has both measurement delay and sensor request delay. These two 

types of delay must be considered when designing a sensor manager. The effects of sensor request delays 

have been analyzed in (Pao & Kalandros, 1998) 

4.2 Sensor Dropout 

The second type of adverse effects is sensor dropout. Sensor dropout is described by an extended loss 

of sensing resources due to sensor reallocation or sensor failure. This can cause degradation in the ability 

to maintain a desired estimation performance. Changing the rate however can often allow the tracking 

performance to recover to desired levels. The general idea is that when we lose the ability to use a sensor, 

the rate of the remaining sensors must increase in order to compensate for the reduction in sensor infor- 

mation. A simple illustration can be made using a scalar state equation and vector measurements. 

The state and measurement equations are as in (2.4) and (2.5) with A(tn) = a, B(tn) = b = 1, and 

with C = [\       ij   ,andD = diagl \d\/2 ... d]/2 ]• This is a single state estimation problem using 

multiple sensors, where the measurements are contained in the vector y(tn). The noise terms, bw(t„) and 

Dv(/n) are zero mean with covariances Q = q = Ta2 and R = T>DTp2S(tn-tm). Using (2.8) and 

(2.9) with the above coefficients we have 

J,(,-|'-)V'(..|».-^CTR-C+« (4-" 
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Let the quadratic form in the denominator of (4.1) be - s C^lHC = — + ... + j. This equation is 

similar to the "resistors in parallel" equation. The total information r~x (tn) decreases as sensors dropout. 

Letting p(tn+ , \t„) = p{ta\tn_x) = pdp, and solving for a desired q in (4.1) we get 

a2 

With a given sensor combination, we can compute a sensor sample rate that will achieve the desired vari- 

ance goal. Using q = To2 in (4.2) the sample rate is 

= oHp-^jQ) 
"        ^Pdpr-e\tn)-a2 

Notice that the process noise variance is linearly related to the sample rate. We now give an example 

showing how increasing the measurement rate can compensate for sensor dropout to maintain a desired 

variance goal. 

Example: The system coefficients, the noise variances, and desired prediction variance is 

a = \,b = l,C=[i Mill i]T,rf, = 0.1.O2 = 4, p2= 1,7^ = 5 (4.4) 

where / e {1,..., 7} indexes seven different sensors having equal measurement variances. Using these 

coefficients the simulation removes one sensor at each 20th sample. Figure 4.2a and Figure 4.2b show 
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what happens to the resolution and rate, respectively,' when each sensor drops out. The effective sensor 

resolution decreases linearly because each sensor has the same variance. 

Reduction in sensor information as sensors drop out 
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Figure 4.2 Compensation of sensor drop out using sensor rate 
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Figure 4.2c shows the desired prediction variance, the prediction variance, and the update variance. Once 

the prediction variance has converged to the desired prediction variance it is maintained there by adjust- 

ing the sensor rate of the remaining set of sensors. This gives a technique for controlling the variance 

when sensors dropout. 

5. Simulation Results 

In this section, we provide a sampling of our numerous simulation results to illustrate some of the 

effects of choosing different covariance goals on the rate and resolution. The first simulation fixes the dif- 

ference in desired covariances Knom = Pdp - Ydu, the second simulation fixes the desired sensor resolu- 

tion J~lm = Vjl - P^', and the third simulation uses desired covariances that cause both the rate and 

resolution to increase. 

The three simulations use a suite of the same eight sensors, each having a minimum sample period of 

0.2 seconds. Figure 5.1 shows the level curves of the sensor covariance matrices. Notice that each of the 

sensors have different qualities and provide more or less information in different directions. These 

ellipses were generated using the measurement covariance matrices given in (5.1). Matrices R7 and R8 

-20 
20 -20 20 -20 20 -20 
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Figure 5.1 Suite of eight sensors having different covariances 

condition numbers than the first six matrices, however the sensors associated with R7 and R8 still pro- 

vide information about the random process in a direction that the other sensors provide very little infor- 

mation. 

R. = 
195.75 104.3561 

104.3561 75.25 
, R2 — 

198.25 100.0259 

100.0259 82.75 
}R3 = 

204.00 90.0666 

_90.0666  100 _ 

R4 = 
85.2233 176.7767 

176.7767 438.7767_ 
>R5 = 

93.7588 173.2412 

173.2412 440.2412_ 
>»6 = 

102.2944 169.7056 

169.7056 441.7056 

R7 = 
1029.0 -1019.0 

-1019.0 1029.0_ 
>R8 ~ 

1040.0 -1008.0 

-1008.0 1004.0_ 

The eight sensors are used to track one target in the x-y plane. The system coefficients are 

(5.1) 

A = 1 0 
0 1 

,B = 1 0 

0 1 
•C/ = 

1 0 
0 1 

,Q = o2 T 0 
0 T 

,i= 1,...,8 (5.2) 

The simulation stops after 60 samples have been received. After 30 samples, the user input to the sensor 

manager changes so that better estimates are requested by specifying different covariance goals. The new 

covariance goals cause different rates and resolutions to be used for tracking the target. Each simulation 

uses one figure to show the desired covariance goals with the update and prediction covariances; and a 

second figure is used to show the sensor usage, the sample rate, and the sensor resolution. 
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Simulation 1: The desired covariance goals are chosen to be 

V.) = 

*V'„) = 

64 0 
0 64 

44 0 
0 44 

. VduiQ = 

. *du(fn)  = 

32 0 
0 32 

12 0 
0  12 

,n = 1, ...,30 

,n = 31, ...,60 

(5.3) 

sothatKnom(^) = Vdp(tn)-Vdu(tn) = 

>« 0 

-5 

5 

>*  0 

-5h 

32  0 
0 32 

, Vn. The covariance ellipses are shown in Figure 5.2 

Covariance ellipses during 1 st 30 samples 

P(t It    .) 
ptY)1 v

 n n7 

dp 

-20 -10 0 10 20 

Covariance ellipses during 2nd 30 samples 

du 

-20 -10 0 
x 

10 20 

Figure 5.2 Covariance control results using constant Knom(tn) 
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The sensor usage is shown in Figure 5.3a. Notice that the sensor usage is periodic after an initial transient 

period. When the covariance goals are changed, the rate and resolution both change. Choosing the matrix 

Sensor usage 
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(6) 

c 
® /A  \ 

 OO O Ö O O O O• 0-O O O O ■ 0    oo oo■■■■ oo oo oo oo      oo 

    : OO •'■•O-0 0  O O 

-O  ■ • • O ■ O •: O- O O 

  : OO OO 

(3) 

(2) 

(Dh 

oo 

- OOO     O  0;0  O   O ■ O- O-i-O O  O  O • 0" O OO: OO ■ 

-O :0 O O O.O-O O-O 

_i_ 

o O 

oo 

oo 

0 0-0--0 

10 20 30 

Sample Rate 
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20 30 40 
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S. °-2 

o 
^0.15 
T 
£ 0.1 

^0 0.05 
o 
ü 

2     0 
0 10 20 30 

samples, n 
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Figure 5.3 Sensor usage for constant Knom(tn) covariance control simulation. 
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K     (t ) so that it is constant for the duration of the simulation fixes this annular region. One might 

expect that this would cause the rate to remain constant during the simulation, however because of feed- 

back between the sensor selection and rate selection both signals become periodic. 

Simulation 2: Now we will show a simulation where we hold the nominal sensor resolution constant. 

The desired covariance goals are chosen to be 

**('.) " 

*V'„) = 64 0 
0 64 

. .**('„) = 
32 0 

0 32 
,n = 1,..., 30 

(5.4) 

44 0 
0 44 

. **('«) = 
26.1097  0 

0  26.1097 
,n = 31, ...,60 

0.0156      0 
0     0.0156 

, V«. For n > 31, the matrix Ydp(t„) was set to sothat J;>jg = P^)-p^(0 = 

be diag( [44 44]) and Ydu(tn) was chosen so that the nominal sensor resolution J~lm(t„) is constant. 

Covariance ellipses during 1st 30 samples 

>< 0 

5 

>< 0 

-5 

-20 

-20 

-10 0 10 20 

Covariance ellipses during 2nd 30 samples 

-10 0 
x 

10 20 

Figure 5.4 Covariance control results using constant i„omi.tn) 
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The covariance ellipses are shown in Figure 5.4. The sensor usage is shown in Figure 5.5a. Notice that 

after the first sample the same sensors are used for the remainder of the simulation. Although the 

(8) 

(7) 

(6) 

f<5> 
1(4) 

(3) 

(2) 

(1) 

- oo o • ö o • o • O O Ö O- O O • O ÖO o • o o o • o- oo o o^o o o o o 

- ooo    o o O■ o   O  O  O.O  O- G   O   O o O O O Ö O O O • O 0 o o o o 

0 10 20 30 40 50 

Sample Rate 

20 30 
samples, n 

40 50 60 

Figure 5.5 Sensor usage for constant resolution JH m covariance control simulation 
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resolution remains constant, we obtain better estimates because higher sample rates are used during the 

second half of the simulation. 

Simulation 3: In this simulation, for n > 30 , we switch to desired covariance goals that are correlated 

(i.e. non-diagonal). The desired covariance goals are chosen to be 

v«>= 

V-> = 

44 0 
0 44 .**,('.,) 

12 0 
0 12 

,n =  1,...,30 

23.0294 16.9706 

16.9706 23.0294 
. **,(',,) = 

5.7574 4.2426 

4.2426 14.2426 

(5.5) 

,n = 31, ...,60 

where the eigenvalues of the last two matrices are Xx = 64, X2 = 16 for *Pdp(tn), AJ > 30 and 

X, = 16, X2 = 4 for ¥du(tn), n > 30. The desired covariances matrices for n > 30 are chosen so that 

more information is desired in a particular direction. This is shown in Figure 5.6. 
Covariance ellipses during 1st 30 samples 

10r 

>«    0- 

-10 
-30 

10 

5- 

>«    0- 
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-10u 
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-20 -10 0 
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10 20 30 

Figure 5.6 Covariance control results when switching to desired covariances that are non-diagonal 
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The sensor usage is shown in Figure 5.7a. Notice that after initial transient periods at n = 1 and n 

constant sensor sets are used. 

Sensor usage 

= 31 
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3(4) 

(3) 

(2) 

(1) 

•OOOOOOOOÖOOOOOOOGOÖOOOOOOOOO 

K>    

iOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 

OOOOOOOOOOOOOOOOOOGOOOOOOOOOOOOOOOOOOOOOOOOGOOOOOOOOOOOOOO 

 ;ooooooooooooooooooooooooooooo 

- ooooooooooooooooooooooooooopoo 

-O OOOOOOOOÖOOOOOOOGOÖOOOOOOOOO -000000000000000000000000000 

0 10 20 30 40 50 

0.5 

0.4 

^""0.3 
h- 

0.2 

0.1 
r 

0 

30.4 
o 

7S0.3 

h-S0.2 o 
o 
2 0.1 

V 
0 

10 

10 

Sample Rate 

20 30 40 
Sensor Resolution 

20 30 40 
samples, n 

50 

50 

60 

60 

Figure 5.7 Sensor usage when switching to desired covariance goals that are non-diagonal 
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6. Conclusion 

We have developed sensor management algorithms for allocating sensing resources in multisensor 

systems. The approach we have taken is that of covariance control using rate and resolution as the con- 

trollable parameters. For illustration purposes, we have kept the analysis to one and two dimensions, 

however the techniques introduced here for covariance control are applicable to systems with higher 

dimensional state vectors. 

Using a covariance control approach we developed a novel sensor management scheme based upon 

the choice of two desired covariances. The desired prediction covariance is used to control the prediction 

covariance through the choice of sample rate, and the desired update covariance is used for controlling 

the update covariance through the choice of sensor combinations. Simulation results demonstrated the 

performance of the covariance control approach. 

Future work consists of applying the above sensor management techniques to multitarget tracking 

scenarios. This may require development of new functions or metrics to optimize over, due to the addi- 

tional issues involved with tracking multiple targets. Some of these issues are 1) better description of sen- 

sors in terms of agile and non-agile sensing resources and sensor capabilities, 2) crossing or interacting 

targets and a desire to resolve them, and 3) addressing cluttered measurements in the development of bet- 

ter filtering algorithms and its consequent effects on the sensor manager. 
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Abstract 

This paper provides an analysis of error (»variance control tech- 
niques for allocating sensing resources in distributed, multiproces- 
sor, multisensor systems. We present two algorithms for allocating 
sensing resources that manage the rates and resolutions at which 
sensor information from various nodes is processed. An elliptical 
annulus described by two covariance matrices is used to control the 
prediction and update covariances in the decentralized Kaiman fil- 
ter (DKF). These algorithms allow for nodal autonomy by letting 
each node control the usage of its own suite of sensors. With a sin- 
gle state filter, these sensor management techniques are shown to 
result in a discrete periodic Riccati equation (DPRE). 

1. Introduction 

In many multisensor surveillance systems, sensor management 
techniques are needed to balance tracking performance with system 
resources. Sensor management is concerned with improving or 
optimizing the measurement process [4]. Most sensor management 
techniques have considered rate and resolution separately [6,7,8]. 
We define the resolution as the inverse of an error covariance 
matrix, the so-called Fisher information. A block diagram of a 
decentralized tracking system is shown in Figure 1.1. This model 
shows the different components of the system including sensing 
and communications facilities along with signal and information 
processors and a sensor manager. This block diagram illustrates the 
decentralized sensor control problem, where the sensor manager 
uses rate and resolution to maintain the information matrix 
p-'(/;|+1|/n) within an elliptic annulus described by a desired 
update information matrix and a desired prediction information 
matrix given by Pj» (/„) and P^(r„), respectively. In contrast to a 
centralized sensor manager, the decentralized sensor management 
problem is further complicated due to the presence of feedback of 
information from other nodes' sensors. 

Modulated 
Electromagnetic or 
Acoustic Energy 

TARGET 

Noise 
Signal Plus 

Noise 

SENSORS 

%'<'»>• V*'.) 

SIGNAL 
PROCESSOR 

Tf.) 

SENSOR 
MANAGER 

OTHER    (-- 
NODES 

*■' <'J'»> 

Measurements 

INFORMATION 
PROCESSOR 

COMMUNICATIONS 

—' Modulated 
Electromagnetic or 
Acoustic Energy Noise 

This paper is organized as follows. Section 2 develops the DKF. 
Section 3 develops the two distributed multiprocessor sensor con- 
trol algorithms. The results of simulations are used to illustrate how 
the algorithms are applied to a tracking system. Finally, Section 4 
gives some conclusions and discusses issues for further investiga- 
tion. 

2. Decentralized Kaiman Filter 

We assume there are M fully connected nodes, each having m{ sen- 
sors capable of taking measurements of length kg where 

i e{ 1,..., M} and j e{ 1,.... /»,} . The first step is to partition the 

centralized equations. Assuming simultaneous reception of all 
measurements, the measurement vector, the measurement matrix, 
and the noise components are 

*'•) - [yj('„) ••• /&('„>]T 

C(r„) - [eft,,) ... CT,«M)]T 

Figure 1.1 Components of a Decentralized Tracking System 

respectively. When the measurement noise terms across each pro- 
cessor are uncorrelated, the covariance has a block diagonal struc- 

ture,    R(<„) = blockdiag^(ttt) ... Rw(/„)]-    These    steps 

simply partition the centralized measurement equation so that each 
node receives the respective measurements. The rth node in the net- 
work has the following state and measurement equations 

*('„ +1) = */('.>*<'«>+ B/< W«) <2-») 

*,«„) - CfaWJ + D,.^)*,.«,,) (2.2) 

respectively, where A,(t„), B.(/„) ett"*N, C,(t„) e*L'*N, and 

L, = £*i ikij. The noise terms B,.(/„)»♦>,(/„) and D,.(/>,.«„) 

are zero mean, with covariances B,-(rll)E[M'/(/(I)M»T(tjii)]B
T(/||) 

= QS^., and D/(t;i)E[v/«B)v,T(r/if)lDT(r,I) = R8()l_,J, respec- 

tively. Although the state equation coefficients have been indexed, 
they are assumed to be the same across all processors. With these 
definitions, each node starts by computing estimates based strictly 
on its own observations. The prediction and update equations at 
each node are the same as the standard Kaiman filter equations [ 1 ]. 

This work has been supported in part by the Colorado Advanced 
Software Institute (CASI), the Data Fusion Corporation (DFC), and 
an office of Naval Research (ONR) Young Investigator Award 
(Grant NOOO14-97-1-0642). 
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Prediction Equations: 

*,e„|'«-1>= A.<w»-11'»-1> <23> 

W,,|'-l>-<W*/<'.|'.-|) (2-4> 

P,C»|'„-.) = A,(/.)P^,-,|/._,)A,T(0 + Q^) (2.5) 

Update Equations: 

*7Htn\t„) = Pr'('„|'„-,) + CT(/n)Rr<(/|()C,.(rfl) (2.6) 

*,('„) = hUn\tn)CjU„)R7lUa) (2.7) 

i/('n|<„> " */<M'-1> + «WW.)->/C|'.-1»    (2:8) 

where the carets (A) denote globally optimal estimates obtained 
from the previous measurement cycle and the tildes (~) denote par- 
tial estimates based strictly on new local observations. Once each 
processor's sensors go through a measurement cycle, each node 
communicates measurement (state) vectors and covariance matri- 
ces to .every other node. 

2.1 Assimilation of State and Variance 
Using equations (2.3) - (2.8) along with the associated centralized 
Kaiman filter equations we can derive two forms for die assimila- 
tion equations for combining state estimates [5]. The first method 
does not directly use measurements or measurement covariances, 
but rather the local state estimates and state covariances: 

*,«,,|'„) = p,c„K„)[Pr,</
n|',,-i)

A
l('»|'„-i) 

-M    - . . . (2-9a) 

PF'««!',,) =Pr,e„|<n-I)
+X PJ,(',,|'«)-PJ1('»I'«-«) (2-9b) 

The second method updates the global state and covariance using 
measurements and measurement covariances: 

(2.10a) 
*/C,|'„) = p,('»|'»)[pr'('n|',,-i)*,('B|'«) 

«v1 cn|'«)=pr' c,|'» -.)+I" > CJ('»)RJ! (WJ (2-10b) 
These two forms of the information update in the DKF are mathe- 
matically equivalent to the associated centralized Kaiman filter 
information update [5]. We use the second form because it shows 
explicitly how the measurement information adds to the prediction 
information matrix. While these equations assume that every node 
produces a measurement, this assumption is relaxed in the algo- 
rithms developed. 

With the above equations, the motivation is to develop computa- 
tionally efficient ways of selecting the sample period and subsets of 
sensors so that a desired estimation performance is achieved. 

3. Distributed Multiprocessor Sensor Control 

3.1 Rate and Resolution 

The level curves (ellipses) of the information matrices in (2.6) and 
(2.1 Ob) increase monotonically with additional measurements from 
the sensors. Plot (a) in Figure 3.1 illustrates a set of monotonically 
increasing ellipses for information matrices in SR2x2, where the 
sets Si have the properties SicS2cz... <zS. and \S,\ = i (\Si 
denotes number of sensors in the ith set). The innermost ellipse in 
plot (a) of Figure 3.1 corresponds to the ellipse of the information 
update using only one sensor. Each successive ellipse proceeding 
outwards is a result of using one additional sensor,, with the outer- 
most ellipse using six sensors. 

p-l/c \ 
m p(tn+oig 

Figure 3.1 (a) Ellipses representing matrices achieving higher res- 
olution (smaller covariance) as the number of sensors increases, (b) 
prediction error covariance ellipses as a function of the sample 
period. 

The level curves of the prediction covariance in (2.5) may or may 
not increase monotonically with the sample period T. Plot (b) of 
Figure 3.1 shows non-monotonically "growing" ellipses where 
A,(7-), Q,(7"),and P,(tH\tm) are given by 

A,-(r) = 1 T 
0 1 

.Q,m-o? 
7-3/3 7-2/2 

7-2/2    T 
.P/('„|'„> = 

4 2 
2 3 

(3-1) 

As illustrated in the plot (b), the prediction covariance may 
decrease in some directions as the sampling period is increased. 
The inner most ellipse shows the prediction covariance when the 
sample period is Os. The sample period increases by 0.5s for each 
successive ellipse proceeding outwards, with the outermost ellipse 
having a sample period of 2.5s. 

3.2 Covariance Control 
The covariance control technique used here builds upon some of 
the techniques developed in [3]. The desired update and prediction 
covariance (information) matrices are treated as upper bounds 
(lower bounds) on the error covariance (information update) matri- 
ces. Since the information update is always greater man or equal to 
the inverse of the prediction error covariance, the desired matrices 
should be related as P^ £ P^ <=> ?d > ¥du. The desired infor- 
mation update matrix is used with (2.10b) to compute the optimal 
sensor resolution (set of sensors), and the desired prediction covari- 
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ance matrix is used with (2.5) to compute the optimal intemodal 
sampling rate. All practical systems have a minimum sample 
period determined by sensor limitations and possibly communica- 
tion and processing delays. We therefore specify a minimum inter- 
nodal sample period Tmin. 

3.2.1  Rate Computation 

The function we minimize to solve for the optimal sample period is 

ro(/„) = arg min f{T) = det{fdp(tn)-fi(t„ + T\t„)) 

vr>o 
(3-2) 

where P^/,, + T\t„) is given in (2.5) and T0 is the optimal sample 
period computed by the Ah node. The roots of f(T) are always 
real because the matrix difference in the determinant is symmetric. 
Denoting the roots of f{T) as z,, we let the optimal sample 
period be T0 = min(zß > Tmin. When min(zj) < Tmi„, then we 

Tm!„ which will insure fast convergence of the covari- letr0 = 
ance. 

min 

3.2.2  Resolution Computation 
The resolution (set of sensors) is computed by minimizing 

ro0„) = arg min g(D = \VTlUm\ta)-rjHtj\F 

r 
(3.3) 

where T is a collection of subsets of the available sensors and 

pr> (/n|/;I) is given in (2.10b) with the summation over one of the 

subsets in T. With <I>; the set of sensors at the fth node and letting 

K = YM_ I*,] and 4> ={Jf_ x 4>,-, the optimal solution for the 

minimization in (3.3) would be to let T equal the entire set of sen- 

sor combinations of <J>. The number of combinations in this set is 

2K. For a large number of nodes and/or sensors, the search for this 
optimal solution would be too computationally demanding for dis- 
tributed real-time processing. In order to reduce the size of the 
search, we considered nodal ordering schemes where the minimi- 
zation is done over one node's sensoifs) or groups of nodal sen- 
sors), between each sampling interval. 

We used the Frobenius norm of the difference between actual and 
desired information matrices as given in (3.3). When the desired 
information update is required to be a lower bound, we also check 
the condition 

W*r'('„+i|'.+ i>-FJi<'«»>0 (3.4) 

which will insure that the information update is greater than the 
desired information update. 

3 3 Ordered Nodes Algorithm 

The Ordered Nodes Algorithm imposes a random ordering on the 
M nodes. Each node sequentially uses its own sensors and then 
passes the sensing task to the next node's sensor(s). When the 
desired update information is sufficiently "small", this algorithm is 
appropriate because each node's sensors can individually maintain 
the desired update information. This ordered sampling scheme uti- 

lizes all nodes in such a way that a single sample rate is used for 
each sensor while the sample rate between sensors from different 
nodes is multirate and periodic. The sample rate for one node's 
sensors will be referred to as the intranodal rate and the combined 
sample rate or communication rate between any two nodes will be 
referred to as the intemodal rate. 

Example: 
Three nodes track one target in a single coordinate. Plot (a) of Fig- 
ure 3.2 shows the sensor usage for the three nodes where nodes 1, 
2, and 3 have 2,3, and 4 sensors, respectively. This simulation used 
the following coefficients for the three nodes 

A/= l,Qi(t„) = o2T(tn),ie {1,2,3} 

C,(fB) e *2, C2(r„) e *3. C3(t„) e K4 (3.5) 

Rrdiag[l3,23], R2=diag[6,22,421 Rj=rfiag[10,15,18,35] 

The sensors at each node are ordered from smallest to largest vari- 
ance. The minimum intemodal period was set to Is. The intemodal 
rate and sensor resolutions for all nodes are shown in plots (b) and 
(c), respectively. At sample n = 21, the desired update and predic- 
tion variances are increased which cause the sensor rate and resolu- 
tion to both decrease. The peaks in the sensor resolution are due to 
nodes using sensor combinations that achieve the highest 

Sensor usage for each node 
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Figure 3.2 Ordered Nodes Algorithm results: (a) nodal sensor 
usage, (b) intemodal rate, and (c) sensor resolution. 
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resolution during the respective time periods. Each of these peaks 
in the resolution have a corresponding reduction in the computed 
internodal rate. For instance, when node 2 uses its 1st sensor at 
n = 5, the resolution peaks and the rate (computed by node 3) 
decreases. These two plots illustrate the interplay between rate and 
resolution in maintaining a desired variance. 

Figure 3.3 plots the error variance and the desired update and pre- 
diction variances. The peaks and troughs of the sawtooth waveform 
correspond to the prediction and update variances, respectively. 
Between samples the error variance increases linearly because a 
Wiener process is used to model the target motion. The slope of the 
line is determined by the white noise variance, a2. The error vari- 
ance is plotted versus time, and illustrates how the sample period 
increases during the second part of the simulation. 

Variance convergence using Ordered Nodes Algorithm 
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Figure 33 Variance convergence in Ordered Nodes Algorithm 

When each node sequentially uses the same sensor(s) and the same 
internodal rate, the steady-state error covariance can be modeled 
with a discrete periodic Riccati equation (DPRE) [2]. The proper- 
ties of the coefficients of a DPRE are 

A(/„) = A(/.+ T), Q(/„) = Q(/,+ D 

C('„) = C(/„+r),R(/)1) = R(/Ji+D 
(3.6) 

where T = £.= ( T,{tn) is the intranodal sample period. Wim a 
scalar state, the Ordered Nodes Algorithm will always result in a 
DPRE because the prediction variance is always the same for com- 
puting the resolution in (3.3). 

The requirement of only using one node per sample period can 
limit the effectiveness of the Ordered Nodes Algorithm. In the 
Ordered Nodes algorithm, the covariance is controlled primarily 
through each node's choice of sample period and selection of its 
sensors. 

3.4 Extended Ordered Nodes Algorithm 

While the Extended Ordered Nodes Algorithm also imposes a ran- 
dom nodal ordering, when the desired update information can not 
be achieved, then the optimal sensor set at one node is passed as a 
group to the next node in order to perform a joint optimization over 

this group of sensors and its own sensors. If both nodes can not 
achieve the goal, a third node is used, and so on. After the state 
estimate is updated using this sensor combination, the process is 
repeated beginning with the next node. When condition (3.4) is 
met, men one node's sensors can achieve the bound. When condi- 
tion (3.4) can not be met, the optimal set of sensors at the current 
node based upon the minimization of (3.3) is used along with the 
optimal set computed by the next node. 

Example: 
Five nodes track one target in the x-y plane. The state transition 
matrices and process noise (»variances for each node are 

A; = 1 0 
0 1 

.Q,-m = a2 T(t„)    0 

0    T(tn) 
.'"e{l 5}     (3.7) 

The five nodes each have 3 sensors that measure the state vector. 
Plots (a), (b), and (c) of Figure 3.4 show the sensor usage for each 
node, the internodal rate, and the sensor resolution, respectively. 
Plot (a) explicitly shows which nodes and sensors are used during 
each sample instance. After the first half of the simulation, the 
desired prediction and update covariance matrices are decreased, 

Sensor usage for each node 
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Figure 3.4 Extended Ordered Nodes Algorithm results: (a) nodal 
sensor usage, (b) internodal rate, and (c) Frobenius norm of com- 
bined sensor resolution. 

50 

2400 



resulting in an increase in both internodal rate and sensor resolu- 
tion, i.e. more sensing resources are required to track the target. 
Further note how the choice of sensors is periodic. The level curves 
of the measurement covariance matrices are shown in Figure 3.5. 
The sensors for each node are ordered in increasing size, i.e. the 
best sensors to worst sensors. Nodes 1, 2, and 4 have ill-condi- 
tioned measurement (»variances matrices. 

Nodel Node 2 Node 3 Node 4 Node 5 
10 10 / /   10 10 10 

-10   ~0     10^0     0     10^0     0     10-"10     0     1tf-"10     0     10 
X X X X X 

Figure 3.5 Level curves of sensor measurement covariances for 
each node. 

As mentioned above, the elliptic annulus is decreased at n = 26. 
Plots (a) and (b) of Figure 3.6 show the desired covariances as 
thick solid lines and the prediction and update covariances as solid 
and dotted lines, respectively. The desired covariances during the 
1st and 2nd halves of the simulation are related by 
prfo('«) = cPrf«('ii) wnere ol. Furthermore, the desired cova- 
riances are chosen so that the estimates are more accurate in one 

Covariance ellipses during 1st 25 samples 

Covariance ellipses during 2nd 25 samples 

10 

>•   0 

-5 

-10 

P*(t„) 

-30 -20 -10 0 
x 

(b) 

10 20 30 

Figure 3.6 Covariance control using the Extended Ordered Nodes 
Algorithm showing ellipses for prediction and update covariance 
matrices: (a) covariance control during 1st 25 samples (b) covari- 
ance control during 2nd 25 samples. 

direction than in another. The metric(s) used in this simulation 
were the Frobentus norm and the condition 
XmM(Prfu(r„) - f(t„\t„)) > 0. As shown in Figure 3.6 this condi- 
tion is met, because the level curves of VU„\t„) are completely 
contained within the level curve of fdu{ttt). The update covari- 
ances then grow until the prediction covariance becomes tangent to 
the desired prediction covariance. 

The Extended Ordered Nodes algorithm reduces to the Ordered 
Nodes algorithm when each node can individually satisfy the con- 
dition in (3.4). 

4. Summary 

We have developed two algorithms for allocating sensing resources 
in a distributed multisensor network. The approach we have taken 
is that of covariance control using rate and resolution as the con- 
trollable parameters. For illustration purposes, we have kept the 
analysis to one and two dimensions, however the techniques intro- 
duced here for covariance control are applicable to systems with 
larger state vectors. The Extended Ordered Nodes Algorithm is 
more flexible than the Ordered Nodes Algorithm because it allows 
for simultaneous sensing across nodes so that increased sensor res- 
olution may be achieved. Issues for further study include determin- 
ing the optimal nodal order that achieves the best covariance 
control and analyzing how the choice of the elliptic annulus affects. 
the rate and resolution. 

References 

[1] Y. Bar-Shalom and X. Li, Estimation and Tracking: Princi- 
ples, Techniques, and Software, Artech House, Boston, 1993. 

[2] S. Bittanti, A. J. Laub, and J. C. Willems, The Riccati Equa- 
tion, Springer-Verlag, Berlin, 1991. 

[3] M. K. Kalandros and L. Y. Pao, "Controlling Target Estimate 
Covariance in Centralized Multisensor Systems", Proceedings 
of the American Control Conference, Philadelphia, PA, pp. 
2749-2753, June 1998. 

[4] Robert Popoli, "The Sensor Management Imperative," Multi- 
target-Multisensor Tracking: Applications and Advances, Vol. 
2, pp. 325-392, Artech House, Boston, 1992. 

[5] B. S. Y. Rao, H. F. Durrant-Whyte, and J. A. Sheen, "A Fully 
Decentralized Multi-Sensor System For Tracking and Surveil- 
lance", The International Journal of Robotics Research, Vol. 
12,No. 1, February 1993. 

[6] W. Schmaedeke, "Information-based Sensor Management," 
SPIE Proceedings, Vol. 1955, April 1993. 

[7] R. A. Singer, "Estimating Optimal Tracking Filter Perfor- 
mance for Manned Maneuvering Targets," IEEE Trans, on 
Aerospace Electronic Systems, Vol. AES-5, pp. 473-483, July 
1970. 

[8] G. Van Keuk, "Software Structure and Sampling Strategy for 
Automatic Target Tracking with a Phased Array Radar," 
AGARD Conf Proc. No. 252, Strategies for Automatic Track 
Initiation, Monterey, CA, pp. 11-1 to 11-13, October 1978. 

2401 



Proceedings of the American Control Conference 
San Diego, California • June 1999 

On the Order of Processing Sensors in Sequential 
Implementations of Fusion Algorithms * 

Lucy Y. Pao    and    Lidija Trailovic 
Department of Electrical and Computer Engineering 

University of Colorado at Boulder 

Abstract 
We examine the order of sensor processing in the 

sequential Multisensor Probabilistic Data Association 
(MSPDA) filter for target tracking applications. If two 
sensors of different qualities are usedj simulations and 
analyses show that the root mean square position error is 
smaller when the worse sensor is processed first. 

1 Introduction 

Tracking problems involve processing measurements 
from a target of interest, and producing, at each time 
step, an estimate of the target's current position and ve- 
locity vectors. Uncertainties in the target motion and in 
the measured values, usually modeled as additive random 
noise, lead to corresponding uncertainties in the target 
state. Additional uncertainty regarding the origin of the 
received data, which may or may not include measure- 
ment (s) from the targets or random clutter (false alarms), 
leads to the problem of data association [1]. 

In this paper, we analyze the sequential implemen- 
tation of the Multisensor Probabilistic Data Association 
(MSPDA) filtering algorithm [3]. It was shown in [3, 4] 
that sequential processing of information from sensors of 
equal quality is superior to parallel processing of the sen- 
sor information, in terms of computational efficiency and 
two performance metrics. In tracking applications, how- 
ever, sensors are usually of unequal qualities, and tracking 
performance may be affected by the order of processing 
sensor information. Thus, we investigate here the optimal 
order of processing sensor information (in terms of mini- 
mizing the root-mean-square position error) in sequential 
implementations of the MSPDA algorithm when two sen- 
sors of different qualities are used. 

This paper is organized as follows. In Section 2, we 
review the sequential implementation of the Multisen- 
sor Joint Probabilistic Data Association (MSJPDA) algo- 
rithm. Simulation results are then presented in Section 3, 

'This work was supported in part by an Office of Naval Research 
Young Investigator Award (Grant N00014-97-1-0642), and a Na- 
tional Science Foundation Early Faculty CAREER Award (Grant 
CMS-9625086). The authors thank Christian Frei of the Automatic 
Control Laboratory, Swiss Federal Institute of Technology, Zurich, 
Switzerland for his help in debugging the simulator. 

followed by more analytical results in Section 4 where we 
consider the Modified Riccati Equation and present solu- 
tions for first through sixth-order target process models. 
Finally, conclusions are presented in Section 5. 

2 Sequential MSJPDA Filtering 

The multisensor multitarget tracking problem is to 
track T targets using N, sensors in a cluttered environ- 
ment. Some of the measurements arise from targets, and 
some from clutter; some targets may not yield any mea- 
surements in a particular time interval or for a particular 
sensor. The probability of detection P£ is assumed to be 
constant across targets for a given sensor i. 

The dynamics of the target state x* (ft) are assumed to 
be determined by known matrices F*(ft) and G*(fc), and 
random vectors w'(ft) as follows 

x'(ft + 1) = F4(ft) x'(ft) + G*(t) w*(*) (1) 

where t = 1,...,T. The noise vectors w'(fc) are inde- 
pendent Gaussian random variables with zero mean and 
known covariance matrices Q*(fc). 

With Ns sensors, let M£, i = 1,2,..., N„ be the num- 
ber of measurements from each sensor i at the ftth time in- 
terval. Assuming a pre-correlation gating process is used 
to eliminate some of the measurements [1], let mj. denote 
the number of validated measurements from sensor i at 
time k. The volume of a gate at time k is chosen such 
that with probability P& the target originated measure- 
ments, if there are any, fall into the gate of sensor i. The 
target originated measurements are determined by 

z\tli(k) = !!<(*) x»(*)+vj(k), (2) 

where t = 1,...,T, t = l,...,N„ and 1 < U < Ml
k. 

Matrices Hi (ft) are known, each vf(fc) is a zero mean 
Gaussian noise vector uncorrelated with all other noise 
vectors, and the covariance matrices Rj(fc) of the noise 
vectors v\(k) are known. For a given target t and sensor i, 
it is not known which measurement U originates from the 
target. That is the problem of data association whereby 
it is necessary to determine which measurements origi- 
nate from which targets [1]. Measurements not originat- 
ing from targets are false measurements (or clutter), and 
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they are assumed to be uniformly distributed throughout 
the surveillance region with a density A. 

A sequential implementation of the MSJPDA algo- 
rithm processes the measurements from each sensor one 
sensor at a time [3, 4]. The measurements of the first 
sensor are used to compute the intermediate state esti- 
mate x'(fc|A:) and the corresponding covariance P*(A:|fc) 
for each target. The measurements of the next sensor 
are then used to further improve this intermediate state 
estimate. In processing each sensor's measurements, the 
actual association being unknown, the conditional esti- 
mate is determined by taking a weighted average over all 
possible associations. For 1 < t < T, 1 < i < Ns, and 
0 < li < mj, let ßiti(k) denote the conditional proba- 
bility that measurement J< from sensor i is the true mea- 
surement from target t given all measurements received 
up to time A;. l{ = 0 denotes the event that the target 
was not detected at time k. With x\(k\k) and P*(&|&) as 
the state estimate and covariance, respectively, after pro- 
cessing the data of the ith sensor, the update equations 
are 

mi 

x\(k\k) = xll(k\k)+K\(k)y£ßtii(k) 
li=0 

x [ziA (A:) - H«(*)*U (k\k)],     i = l N„   (3) 

where x£(*|A:) = x'(ifc|Jfc - 1) and **„ (*|*) = x'(fc|Jfc). 
With P&(Jfc|fc) = P'Okl* - 1) and P^'(fc|A) = P'^j*), 
the update of the covariance matrices is 

Pti(k\k)=ßto(k)PU(k\k) 
+ [1 - #,„(*)] [I - KKAOIW] PLI(*I*0 

+K{(*) £tf,«,(*Ki,(*Ki,(*)a 

li=0 

- £ ß\M {k)ziM (k) J2 ßlu (*)*.»< (*)' 
li=0 li=0 

i = l,...,N, 

K\{k)T, 

(4) 

A superior performance (in terms of RMS position er- 
ror, track lifetime, and computational efficiency metrics) 
of the sequential implementation of the MSJPDA over the 
parallel implementation was shown [3, 4] when multiple 
sensors of the same quality were used. If the sensors are 
not of equal qualities, however, a question that arises is 
what is the best order to process the sensor data in the 
sequential implementation. 

3 Simulation Results 

For initially comparing sequential implementations of 
the MSJPDA algorithm using different processing orders 
of sensors with different qualities, we ran Monte Carlo 
simulations for two sensors tracking two targets. We con- 

sidered the dynamic target model (1) for t = 1,2, with 
time-invariant matrices F, G, H, Q, and R». A typical 
state vector would include position and velocity variables. 
Hence, typical F and G are 

F = 

1 A   0    0 " ' A2/2      0 
0 1    0    0 1          0 
0 0    1   A ,   G = 0      A2/2 
0 0    0    1 0          1 

(5) 

for the state vectors x'(A:) — [x x y y]T{k) representing 
the positions and velocities of the targets at time &A, 
where A is the time step between measurements. The 
two targets are initially 10 units apart and initially move 
in parallel directions with the same speed, but due to 
process and acceleration noise, directions and speed vary 
in time. There are two sensors whose measurements are 
governed by (2) with 

Hi = Ho = 
10   0   0 
0   0   10 (6) 

The process and measurement noise covariances are 

Q= 
q   0 
0    q , Ri — 

n    0 
0    n ,   R2 = 

r2    0 
0    r2 

•   (7) 

The measurements corresponding to the sensor with co- 
variance Ri are processed first, and measurements from 
the sensor with covariance Ra are processed second in the 
sequential MSJPDA. The initial states of the targets are 
perfectly known, and each target is always well inside the 
surveillance region. 

To evaluate tracking performance, one hundred Monte 
Carlo runs were performed for various values of clutter 
density A and the average RMS position error over all 
runs was computed. Figure 1 shows a sampling of our 
results, where the following parameter values were used: 
A = 1, PG = 0.999, and PD = 1.0. The clutter den- 
sity A was varied from 0.1 to 1.0. The system noise was 
varied (q = 0.0144 and q = 0.0256), and three pairs of 
curves were produced to compare sequential algorithm 
performance when the different sensors of different qual- 
ities were applied (n,r2 = 0.0064,0.0256,0.1024). The 
two sensors used are of different qualities; the better sen- 
sor is the one with the "smaller" noise covariance ma- 
trix Ri. With these parameter values, the expected num- 
ber of false measurements per gate, using the steady-state 
Kaiman filter covariances, varies from 0.085 to 4.672. 
From Figure 1, comparing the trends of the RMS po- 
sition error when the simulations are run with different 
system noise covariance parameters q, and with different 
ratios of ri and r2 in (7), we see that processing the worse 
sensor first yields smaller RMS position error. 

4 Analyses 

Since the Modified Riccati Equation (MRE) can be 
used to predict the RMS position (or other) errors of the 
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Figure 1: Average RMS position error from Monte Carlo 
simulations as a function of clutter density. 

system [1, 2], we also applied the MRE to more efficiently 
evaluate whether processing the worse sensor first leads to 
smaller RMS errors for a wider range of system and sce- 
nario parameters. Multisensor extensions of the MRE [3] 
were used to predict the RMS tracking performance of the 
dynamic target model of (l)-(2) with t = 1 (single tar- 
get). The time step A = 1, PD = 1.0, and PG = 0.999, as 
before. The state vector was chosen to consist of position 
and velocity (as was in Section 3), and hence the position 
error covariance P is a block diagonal matrix. 

For the appropriate time-invariant matrices F, G, H 
and Q,Ri,R2, the MRE iteration for the sequential 
MSPDA filter for two sensors tracking one target is 

P(fc|Jfc-l) = FP(Jfc-l|Ä-l)Fr + GQGr      (8) 

Si (Jfc) = H P(Jk|Jfe - 1) Hr + Ri (9) 

K1(fc) = P(fc|ifc-l)HTS1-
1(*) (10) 

Pi(*|Jfe) = P(k\k - 1) - Cl Ka(Jfe) Si(fc) Ki(*)r (11) 

Sa(t) = HP!(*|Jfe) HT + R3 (12) 

Ka(Jb) = Pi(Jb|Jfc)HTS3-
x(Jt) (13) 

P(jfc|fc) = Pi(Jb|Jb) - Cl Ka(ft) Sa(fc) Ka(*)r (14) 

where 
Cl=PDPG-9i+9i{>yi) (15) 

Cl=PDPG-qi + q2(W?) (16) 

The qi and <& functions are defined in [1, 2] and depend on 
the dimension of the system, PD, A, and V*, the volume 
of the validation region (gate) at time k. 

In the time-invariant case considered here, it was 
found [2] that for most values of PD and A, the equations 
(8)-(14) can be iterated until the covariance P(Ä|fc) con- 
verges to a steady-state covariance matrix P. No general 

stability results are known for the MRE, but numerical 
convergence and divergence have been observed. In or- 
der to obtain a scalar tracking performance metric, the 
steady-state RMS position error can be extracted [2] from 
the sum of the diagonal elements of the P matrix corre- 
sponding to target position 

def 
RMS = e(PD,\)a2   I  £   diag(P)        (17) 

y position 

Using the MRE for a one target-two sensors scenario, we 
computed the steady state error covariance 

P{k\k) = P(k - l|Jfc - 1) (18) 

which is the same definition of RMS position error used 
in the simulations of Section 3. 

4.1 One, Two, and Three-Dimensional MRE 
We considered tracking systems in one, two, and three- 

dimensions, with appropriate system matrices (5), (6), 
and (7). In addition to numerically iterating the MRE in 
equations (8)-(14) in order to obtain the RMS position 
error in steady-state, we also analytically solved equa- 
tion (18). The parameters used were the same as in the 
simulations discussed in Section 3. The state vector con- 
sisted of position, or position and velocity, for the one, 
two, and three-dimensional tracking scenarios. 

With the state vector consisting of position and veloc- 
ity components (second, fourth, and sixth order system 
models), from equations (8)-(14), the steady-state posi- 
tion error covariance matrix P is a block diagonal matrix 
with one block being 

Pblock = 
Pll     Pl2 
Pl2     P22 

entries of which can be computed to be the following: 

(19) 

Pll — TTll — C*2 

Pl2 = ?Tl2 — C*2 

P22 = ""22 _ Cl 

'11 

TTii + r2 

ITll + T2 

»13 

Til + 7"2 

(20) 

(21) 

(22) 

where 

Tn = Pu + 2pi2 +P22 + 0.25g 
_C   (P"+2P"+P22 + 0-25g)2 

1 Pn + 2pi2 + P22 + 0.25q + ri 
Ti2 = Pi2 + P22 + 0.5g 

(pu + 2pi2 +P22 + 0-25g)(pi2 + P22 + 0-5g) ,24. 
1 Pu + 2pi2 + P22 + 0.25g + rx 

r (Pi2+P22 + 0-5g)2 ,„ , 
7T22 = P22 + Q - ^pil+2pl2+p22 + 0.25g + r1' 

(25) 

and Ci and Ci stand for C\ and C\, from equations (15) 
and (16), respectively. 
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Figure 2: RMS position error in a two-dimensional model 
obtained by solving (20)-(22) and by MRE itera- 
tions (8)-(14) for a fourth-order system. 

The RMS position error (17) can be obtained by 
solving"the fourth degree equation system (20)-(22) nu- 
merically. The values of C\ and C2 are substituted 
from steady-state iteration of the appropriate MRE. The 
steady-state solution results for the fourth order system 
model are shown in Figure 2 for tracking in two dimen- 
sions, and compared with the results obtained by MRE 
iterations (8)-(14). The RMS position error is shown 
as a function of the clutter density A for three sets of 
sensor parameters: ri = r2, T\ > r2, and T\ < r2. 
The RMS position error obtained by solving the system 
(20)-(22) matches the results obtained by MRE itera- 
tions. When the two sensors are of different qualities 
(ri ^ r2), the computed RMS position error depends on 
the order of sensor processing, giving the same trends as 
observed in the simulations: processing the worse sen- 
sor first {r-y > r2) results in smaller RMS position error 
(better performance). Similar results were obtained for 
second and sixth order target process models. 

We also evaluated the MRE (8)-(14) with the state 
vector consisting of position only. The one-dimensional 
model reduces to a scalar system discussed here in detail, 
while the two and three-dimensional models become di- 
agonal systems, with each diagonal entry being similar to 
the scalar system. For the scalar system, 

F=G=H=1, R1=ri, R2=r2, Q=o,   n, r2, q > 0.     (26) 

The MRE iterations (8)-(14) become 

P(k\k - 1) = P(k - l\k - 1) + q (27) 

(28) Pi(k\k) = JP(fc|Jb — l) — Cj 

P(Jfe|Jfc) = Px(Jk|fc)-C2 

P(fc|Jfc-l)2 

Pi(fc|*)2 

P(k\k - 1) + n. 

Pi(k\k) + r2 
(29) 

Combining (27), (28), and (29), we have 

P(k + l|Jfc) = P(k\k) + q 

-Cl 
p(k\k-i)-ci/{^ri+r2 

(30) 

In  steady-state,   covariances  are  constant  P{k\k)   = 
P(k — l\k — 1) = P, expectations are constant P(k+ l\k) = 
P(k\k - 1) = Px = P + a, C* and Cl become d and C2, 
and expanding (30) yields a fourth degree equation 

(P + q)\l-d)[d+C2(l-d)] 

+(P + q)3 [Ci(n + r2) + Ca(l - C1)2r1 - (1 - d)q] 

+(P + q)2 [Cir,r2 + C2r\ - q(n + r2) - (1 - d)qri] 

.-(P + q) [qrir2 + qri{ri + r2)] - qr2r2 = 0. (31) 

The analytical solution is [5] 

(P+q)*+a3(P+q)3+a2(P+q)2+a1(P+q)+ao = 0 (32) 

+ 2 I       3 2 
^2(1200 + of. - 3aia3) 

3^4 

where 

VÄ     -8ai + 4a2a3 - a% \ 

zn WB        ) 
1/2 

(33) 

A = 27a? - 72ooa2 4- a\ - 9oi02o3 + 27aoa3 

+ ((27a? - 72a0a2 + 2a?, - 9a: a2a3 + 27a0a|)3 

-4(12ao + a^-3a!a3)
3)1/2 

VÄ „        2a2     a\ ■    v^2(12a0 + a% - 3a:a2) 

and 
3VÄ Zy/2 

ao = - 
qrfr2 

ai = - 

a2 = 

a3 = 

{l-d)[d+C2(l-d)] 
 qr2 + 2arir2  
(l-d)[d+C2(l-d)] 

Cirira + Car?-(1-Ci)qri  
(1-dHd+CMl-d)] 

Ci(ri + r2) + 2C2(1 - d)n - (1 - d)q 

(l-Ci)[Ci+(72(l-<7i)] 

qixi + r2) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

The closed-form solution (33)-(39) for the steady- 
state scalar approximation shows how the system noise q 
and sensor parameters r\ and r2- affect the «»variance P, 
and therefore the RMS position error. The RMS posi- 
tion error as a function of clutter density A for first, sec- 
ond, and third order system models, obtained from equa- 
tion (33) match the results obtained by MRE iterations 
(8)-(14) of the appropriate system models, and observed 
trends are similar to those of Figure 2. 
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4.2 Results over Larger Parameter Ranges 
So far, we have shown that for several sets of sensor pa- 

rameters, the system tracking performance in terms of the 
RMS position error improves if the worse sensor is pro- 
cessed first. It is of interest, however, to investigate how 
the order of sensor processing affects the RMS position 
error over a wider range of system parameters: sensor pa- 
rameters ri and T2, system noise q, and clutter density A. 
Hence, we used MRE numerical iterations to efficiently 
evaluate over large parameter ranges. 

We varied the ratio of the sensor parameters Txfri 
between 0.01 and 100, while keeping the parameter r of 

the equivalent sensor fi = ^- + ^-jatr = 0.01. Figure 3 

shows for a second-order, two-dimension system, how the 
RMS position error, normalized to the RMS position error 
when both sensors are equal (ri/r? = 1), varies with ri/t2 
for q = 0.01 and 0.1 and A = 0.001, 0.2, 0.5, and 1.0. The 
results axe given only for the parameter values where the 
MRE iterations converge. Results for other first through 
sixth order process models are similar. The range where 
ri/r2 >.l corresponds to the case when the worse sensor 
is processed first. As expected, the RMS position error 
increases with increased system noise q and with increased 
clutter density A. 

Qualitative behavior over a large range of r\fri is 
mostly affected by the system order and noise q. If the 
noise q is low, no significant differences in the RMS posi- 
tion error can be observed for different orders of process- 
ing sensor information - the curves are almost symmetri- 
cal around the center point r\JT2 = 1. For larger noise q, 
the RMS position error exhibits a local minimum at or 
slightly to the right of the ri/r2 = 1 point. Around this 
point, there is a range of T\JT2 values where the RMS 
position error is smaller if the worse sensor is processed 
first. For example, in the two-dimensional, second order 
case, shown in Figure 3, the error for r\/r2 = 10 is smaller 
than the error for r\lr-i = 0.1. 

5 Conclusions 

We have analyzed the order of sensor processing in the 
sequential implementation of the MSJPDA filter. Our re- 
sults indicate that processing the worse sensor first gen- 
erally yields smaller RMS position error. Though counter 
intuitive at first, this trend was confirmed in one, two, and 
three-dimensional models (first through sixth-order sys- 
tems) of the MSPDA filter using both the MRE numerical 
algorithm and its steady-state scalar approximation. A 
full explanation of this trend is difficult, because of the 
complexity of the data association process built in the 
MSPDA algorithm. Analyses over ranges of sensor pa- 
rameters show that tracking system performance of the 
sequential MSJPDA filter, in terms of the RMS position 
error, favors using sensors of comparable qualities, and 
that processing the worse sensor first gives better results 
if the sensor qualities do not differ by a large amount. 

1.8- 

«2 * 1.6 

^ 1-4 

1.2 

10' 

\ 

3-D, second order, q=O.J 

o.5r       0;2 

... . 

X- 0.001 
:;"-—: '   .  ! : :: 

10' 10u 

rl/r2 
10' 10' 

Figure 3: RMS position error from two-dimensional (state 
vector: [x y]T) MRE iterations, for different q, 
ri/r2, and A, with equivalent r = 0.01. 
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Abstract 
Surveillance systems tracking multiple targets often do 
not have the sensing or computational resources to apply- 
all sensors to all targets in the allocated time intervals. 
Hence, sensor management schemes have recently been 
proposed to reduce the tracking demands on these sys- 
tems while minimizing the loss of tracking performance 
by selecting only enough sensing resources to maintain 
a desired covariance level for each target. The sensor 
manager algorithm itself, however, incurs a computa- 
tional burden and needs to be implemented efficiently. 
This paper explores the use of randomization and super- 
heuristics to develop computationally efficient methods 
for implementing sensor manager algorithms. 

1 Introduction 

The application of multisensor fusion to surveillance sys- . 
tems has provided superior tracking performance at the 
cost of increased sensing and computational demands. 
Ideally, all available sensors can be applied to all tar- 
gets to achieve the most accurate state estimate of each 
one. However, most sensors can track a finite number of 
targets in a single sampling period. Because of this, not 
all targets can be tracked with all sensors and improv- 
ing tracking accuracy for one target may result in the 
degradation of track accuracy for a different target. Ad- 
ditionally, each measurement imposes a computational 
cost on a tracking system with a finite amount of pro- 
cessing capacity. What is needed is a sensor manage- 
ment technique that can balance tracking performance 
with available resources [4, 5, 6]. 

In [2], a system is proposed that separates sensor man- 
agement into a control problem and a sensor scheduling 
problem. The scheduler prioritizes sensing actions and 
executes them as time allows. Low priority actions may 

be delayed until future scans or may be dropped alto- 
gether. The covariance controller maintains the covari- 
ance level of each target estimate to within a desired 
limit while reducing system resource demands. How- 
ever, the sensor management algorithm itself imposes a 
computational burden on the system and hence must be 
implemented in a computationally efficient manner. 

A search over all possible sensor combinations grows ex- 
ponentially with the number of sensors. This clearly is 
unacceptable, and more efficient methods are needed. 
Super-heuristic methods [3] can be effectively used in 
this application to achieve near-optimal sensor selection 
performance while significantly reducing the computa- 
tional burden imposed by the sensor manager. 

This paper is organized as follows. A review of a co- 
variance control-based sensor management method of 
[2] is given in Section 2. Section 3 discusses super- 
heuristic concepts, which are applied to sensor manager 
algorithms in Section 4. Simulation results of the vari- 
ous techniques are evaluated in Section 5, and Section 6 
compares the computational demand of target tracking 
with and without sensor management. Conclusions and 
future research directions are discussed in Section 7. 

2 Covariance Control 
Figure 1 shows the block diagram of the tracking system. 
Control of the covariance of the system is implemented 
via a sensor selection algorithm. The sensor selection is 
determined based on the difference between the inverse 
of the desired covariance and that of the prediction co- 
variance. Note that the only input to the controller is 
this difference. 

Track estimation is performed by the Kaiman filter. In 
actual target tracking applications a number of other 
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Figure 1: Block Diagram of a Tracking System with 
Covariance Controller (Sensor Selection Algo- 
rithm). 

tasks axe also performed, including data association 
(when clutter measurements or closely-spaced targets 
are present), track initiation and deletion, and registra- 
tion [1]. These tasks compete for sensor and processor 
time as well, and would also fall under the control of 
the sensor manager. In the initial development of sen- 
sor managers in [2], only the state estimation task is 
considered. With this assumption, the controller's job 
is to regulate the sensing resources used by the Kaiman 
filter to reduce the demands on the tracking system due 
to state estimation. 

The Kaiman filter combines multiple inputs from 
stochastic or linearized systems to form an estimate in 
a state space representation. Assume that the tracking 
system has Ns sensors. There are 2N' possible combi- 
nations or subsets of those sensors that can be selected 
by the multisensor manager. The ith. possible subset 
is defined as $j, and NSi is the number of sensors in 
that combination. The input from each selected sensor 
is used to update the state estimate of the target. 

The Kaiman filter is based on the following assumptions 
about the target and measurement systems [1]: 

x(k)    =   Fx(k - 1) + Gu{k - 1) + w(k - 1)   (1) 

Zj{k)    =   HjxW+Vjik),     j = l,...,Nt{     (2) 

where x(k) is the current state of the target; F, G, Hj 
are known system matrices; u(k) is a control signal af- 
fecting the target dynamics; and Zj (k) is a measurement 
of the target from the jth sensor in $j. w(k) represents 
process noise or higher-order motion not modeled by 
F, and Vj(k) represents measurement noise in sensor j. 
Both w(k) and Vj(k) are assumed to have zero-mean, 
white, Gaussian probability distributions. 

Since w(k) and Vj(k) are zero-mean noise processes, the 
target states and measurements in the next time inter- 
val can be predicted by 

x(A | k - 1)    =    Fi{k - 

zj(k)    =   Hjx{k 

The input u(A) is considered known and will be omitted 
in future equations because it can be easily reinserted. 
The quantity Vj(k) = Sj(k) — Zj{k) is known as the inno- 
vation. The covariances of the state and the innovation 
predictions are 

P(A|A-1)   = FP(k-l\k-l)F' + Q(k-l) (5) 

Si (A)   =H1P(k\k-l)H[+R1(k) (6) 

Sj(k)   = HjPj-tik | k)H'j + Rj(k), 

j = 2,...,NSi (7) 

respectively, where Q(k) is the process noise covariance 
and Rj(k) is the measurement noise covariance for the 
jth sensor. Pj (k | k) is the updated covariance resulting 
from sensor j as defined in (10). 

The sequential Kaiman filter runs a separate filter for 
each sensor in the combination, propagating its estimate 
to the next filter [7]: 

£i(A | A) = x(A | A - 1) + Ki(k)(z!(k) - Hxx{k | A - 1)) 

Xj(k | k) = x,_1(A | A) + KjWizjik) - Hjxj^ik | A)), 

j = 2,...,NSi 

x(A|A) = xN,.(k\ A) (8) 

where 

ffi(A)  = P(A|A-l)if{51-
1(A) 

Kj(k) = Pj-iik | WjSrW,   j = 2,...,N3{    (9) 

The state covariance is updated for each filter by 

Pi(fc|Jb)  =  (J--üri(*).Hi)P(Jfc|fc-l) 

P,(A|A)  =   {l-Kj{k)Hj)Pj.1{k\k),   j = 2,...,NSi 

P(k\k)  = PNu(k\k) (10) 

Once the state and covariance estimates have been up- 
dated, they are fed back into the algorithm and the en- 
tire process is repeated for the new set of measurements 
at the next time interval. Alternatively, the covariance 
update can be calculated in a single step using the in- 
verses of the covariance matrices [1] as follows: 

where 

1 | A - 1) + Gu{k - 1) (3) 

A - 1) (4) 

P-J(A|A)    =   p-\k\k-\) + Ji (11) 

Ji    =   J^H'jRj'Hj,   i = l,...,2N'       (12) 
i=i 

is the sensor information gain for the ith combination 
of sensors. 

The sensor selection can be determined based on the 
difference between the inverses of the predicted covari- 
ance in (5) and the desired covariance Pd(k). Replacing 
the updated covariance matrix in (11) with the desired 
covariance and solving for the necessary sensor informa- 
tion gain, we see that we want Jj to equal E, where 



3 Randomization and Super-Heuristics 

E   =   P^{k)-P-l{k\k-l) (13) 

One sensor manager algorithm presented in [2] (and the 
one studied in this paper) is the Eigenvalue/Minimum 
Sensors Algorithm. It requires that the sensors used pro- 
duce an updated covariance that is within the desired 
covariance at all times. This will result in the differ- 
ence, Pd-Pi, where Pi is the updated covariance using 
sensor combination i, having all positive eigenvalues (as 
well as the difference Ji - E). While adding sensors 
will eventually achieve this goal, the computational de- 
mand on the Kaiman filtering algorithm will increase 
linearly with the number of sensors. Since the goal is 
also to reduce the computational load on the tracking 
system, the sensor combination with the fewest number 
of sensors that produces all positive eigenvalues in the 
covariance error should be used at each scan. 

The algorithm can be divided into on-line and off-line 
components. The off-line component precalculates J, 
for each sensor combination. Use of (11) reduces the 
on-line computational demand by eliminating the cal- 
culation of matrix inverses during the Kaiman gain cal- 
culation in (9) for each sensor. Instead, only the in- 
verse of the predicted covariance must be computed each 
scan. The on-line component calculates Ji — E for each 
i and selects those that are positive definite. This en- 
sures that the updated covariance matrix will be within 
the desired covariance limits. Of those combinations 
that meet this criteria, the one with the fewest sensors 
is selected. A global search examines each of the 2Ns 

possible sensor combinations before selecting the best 
combination. Unfortunately, the overall computational 
demand of the sensor manager is 0(2N"n3), where n 
is the size of the state vector. This demand increases 
far more rapidly than simply using all the sensors to 
track the target, where the computational complexity 
of the Kaiman filter is 0(2n3 + 7Nan

3) (ignoring any 
signal processing requirements in generating the mea- 
surements Zj and assuming that the entire state vector 
is measured). Note that this complexity can increase 
dramatically when other tracking tasks such as data as- 
sociation or track initiation/deletion are also included. 

Obviously, the computational burden of a global search 
is prohibitively high. A heuristic search can alleviate 
some of the computational burden at the cost of pos- 
sibly choosing a non-optimal sensor combination. One 
such algorithm is the "greedy" search algorithm. This 
algorithm chooses the sensors one at a time by picking 
the "best" sensor at each iteration. In our case, the best 
sensor is the one that maximizes the smallest negative 
eigenvalue of the difference between Ji and E. When 
there are no negative eigenvalues in the difference, the 
sensor combination is complete. The computational de- 
mand of this algorithm is at most 0{\{N^ + Ns)). 

Another approach for reducing the computational com- 
plexity of sensor manager algorithms is to use super- 
heuristics, a tool for improving any given solution to a 
problem via random perturbation [3]. It begins with a 
base solution (usually found through traditional heuris- 
tic methods) and changes it a little bit to see if the 
solution improves. In cases where there is little struc- 
ture and the cost of evaluating a solution is not too high, 
this tool can be useful. The goal of super heuristics is to 
arrive at a near-optimal solution with much less compu- 
tational complexity than is required to find the optimal 
solution [3]. 

In a sensor manager with Na sensors, the probability of 
randomly picking (with uniform distribution) a "good 
enough" sensor combination is JTVV, where Ng is the 
number of sensor combinations leading to acceptable 
estimation accuracy. We can increase our chance of 
success by selecting Nc random combinations and then 
choosing the best performer of the group. Out of Nc tri- 
als, the probability of finding an acceptable combination 
(N   \    c 

1 — 2^- 1    . Obviously, as the number of trials 

increases, so does the probability of finding acceptable 
sensor combinations, but the computational complex- 
ity increases linearly with the number of trials as well 
(<D(Ncn

3)). Heuristic information can be used to im- 
prove the performance of the sensor manager algorithm 
by increasing the chance that those combinations that 
are more likely to be in the "good enough" set are indeed 
chosen, creating a non-uniform distribution. 

4 Heuristic Development 

In the simulations of the next section, the heuris- 
tic information is generated using two different meth- 
ods: frequency-of-selection and the Greedy algorithm. 
Frequency-of-selection is determined by running Monte 
Carlo simulations off-line using the global search strat- 
egy and recording the number of times each combination 
is picked. The resulting histogram data is normalized 
to create a probability distribution function that is used 
on-line to randomly select sensor combinations for eval- 
uation. This greatly increases the chance of finding a 
near-optimal combination in a few trials. 

The Greedy algorithm can be used to generate an ini- 
tial solution about which a set of random solutions are 
generated. Once a greedy solution is derived, a ran- 
dom sensor combination with the number of sensors less 
than those in the greedy solution is generated in what 
is known as a probabilistic assignment rule (PAR) [3]. 
The probability of choosing each sensor in the combi- 
nation can be uniformly distributed, in which case the 
only information derived from the initial solution is the 
number of sensors. While this may not seem useful, 
knowledge about the rough number of sensors required 



greatly reduces the search space, increasing the proba- 
bility of finding a near-optimal solution in relatively few 
trials. The computational complexity of this algorithm 
is 0(£(Nj + Ns)+n3Nc). 

Further information can be extracted from the Greedy 
algorithm. The result of the Greedy algorithm is an or- 
dered list of the sensors. If the order of the sensors im- 
plies a value (where the first sensor is the most valuable, 
followed by the second, etc.), then this information can 
be used to guide a random selection of additional sensor 
combinations. Begin by using the Greedy algorithm to 
produce an ordered set {sq}^ of all N3 sensors (sq is 
the qth sensor selected by the algorithm) by choosing 
the one that produces the largest minimum eigenvalue 
at each iteration. The actual greedy solution will be the 
first NSg sensors, but all sensors are evaluated to pro- 
duce a complete evaluation of the sensor set. Define the 
following PAR for each sensor: 

Performance of Sensor Selection Algorithms 

P(sq -{ 
I/o 
0 

l<q<b 
q>b 

(14) 

Thus only the first b sensors in the ordered set can be 
selected. The initial chosen combination is the greedy 
solution. To create an alternate sensor combination, 
randomly select one of the first b sensors using a uni- 
form probability distribution. Remove the selected sen- 
sor from the set. Then randomly select one of the first 
b of the remaining sensors. Repeat until the desired 
number of sensors is reached (one less than the chosen 
combination). If the resulting combination achieves a 
positive definite covariance error Pj - Pi, it becomes 
the chosen combination. Nc random combinations are 
created and evaluated in this manner. 

5 Simulation Results 

To evaluate the effectiveness of the super-heuristic al- 
gorithms, a series of Monte Carlo simulations were 
performed on sensor managers using the Eigen- 
value/Minimum Sensors Algorithm with various search 
methods. In each simulation, a multi-sensor system 
is tracking a target modeled by two states, both of 
which are measured by each of seven sensors (producing 
27 = 128 possible sensor combinations). The determi- 
nants of all the noise covariances Rj are equal, making 
all seven sensors of the same overall quality, though some 
sensors are more accurate in particular directions than 
others. To eliminate biases due to specific target dy- 
namics, both the predicted covariance and the desired 
covariance were generated randomly at each iteration. 
The average number of sensors used as well as the num- 
ber of computations performed in executing the search 
algorithms were recorded. The simulations compared 
the following algorithms: 

• Optimal or Global Search: the "brute force" 
method that evaluates all combinations and guar- 
antees finding the optimal sensor combination; 

 Optimal 
—0— Greedy 
—«— Random 
•-•- Frequency 
- »- • Greedy/Uniform 
—e— Greedy/Ordered 

0.005 0.01 0.015 0.02 
Relative Covariance Size (C) 
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Figure 2: Average Number of Sensors Used 

• Greedy Algorithm: builds a sensor combination 
by choosing the best sensor one sensor at a time; 

• Random Subset Algorithm: the global search al- 
gorithm is applied to a random subset of Nc = 8 
of the 128 possible sensor combinations; 

• Frequency-of-Selection Super-heuristic 
Algorithm: same as the Random Subset algo- 
rithm, except that it randomly chooses a subset 
of Nc = 8 sensor combinations based on the a- 
priori probability density function (heuristic infor- 
mation) obtained from off-line simulations rather 
than a uniform density function; 

• Greedy/Uniform Super-heuristic Algorithm: uses 
the Greedy algorithm to determine the maximum 
number of sensors needed, then randomly selects 
Nc = 8 sensor combinations (with fewer sensors) 
based on a uniform probability density; 

• Greedy/Ordered Super-heuristic Algorithm: uses 
the Greedy algorithm and the PAR defined in (14) 
to select Nc = 2 sensor combinations (with fewer 
sensors) in addition to the greedy solution. In 
these simulations, 6 = 4 was determined experi- 
mentally to produce the best overall results. 

Figure 2 shows the average number of sensors selected 
by each search algorithm as the relative size of the de- 
sired covariance compared to the predicted covariance 
is increased (described by the term C). A small rela- 
tive size will, on average, require more sensors than a 
large relative size. In all cases the average size of the 
desired covariance is smaller than that of the predicted 
covariance, or else no sensors would be chosen. Figure 3 
records the average number of floating point operations 
(flops) required by each search algorithm as the relative 
size of the desired covariance increases. 

The global search algorithm requests the fewest sensing 
resources; however, it has by far the highest computa- 
tional demand. On the other hand, the Random Subset 
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Figure 3: Number of Floating Point Operations 

algorithm has the lowest computational demand, but is 
by far the poorest performer in terms of the number of 
sensors it selects. The Frequency algorithm performs al- 
most as well as the global search in terms of number of 
sensors selected and has the same on-line computational 
demand as the Random algorithm. 

The Greedy algorithm decisively outperforms the ran- 
dom subset algorithm in terms of sensors used for only 
a slight increase in computational demand. Both super- 
heuristic algorithms based on the Greedy algorithm im- 
prove performance by again increasing computational 
demand. The performance of the Greedy/Uniform al- 
gorithm matches that of the more computationally de- 
manding Greedy/Ordered algorithm. 

The strongest overall performer is the Frequency-of- 
Selection Super-heuristic algorithm. While it can pro- 
duce near-optimal results for the least computational de- 
mand, the heuristic is developed through Monte-Carlo 
simulations, which can be time-consuming and compu- 
tationally demanding, even off-line. Furthermore, it is 
not clear how the precalculated heuristic changes with 
specific target models, or how robust the performance 
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is to modeling errors. Figure 4 shows the frequency of 
selection of the 128 sensor combinations for the above 
simulations. Notice that while the distribution changes 
as the relative size of the desired covariance is changed, 
the set of most popular sensor combinations is not dra- 
matically affected. More study is needed to determine 
the performance and robustness of the Frequency algo- 
rithm in actual tracking scenarios. 

The greedy algorithms, while being more computation- 
ally demanding, are more flexible, since they can re- 
spond to new dynamic models or noise levels on-line. 
In these simulations they are outperformed by the Fre- 
quency algorithm, but increasing the number of ran- 
dom selections should improve the performance to near- 
optimal. This comes at the cost of increased compu- 
tational demand, of course. The Greedy/Ordered al- 
gorithm generates extra information that lets it mimic 
the performance of the Greedy/Uniform algorithm with 
fewer trials, however the cost of generating that infor- 
mation negates this advantage. 

The biggest drawback of the greedy algorithms is then- 
computational demand. The best solution to this is to 
replace the calculation of the eigenvalues of the inverse 
covariance difference at each step with a lower complex- 
ity metric. However, while several of these have been 
tried, including the trace, the comparison of the direc- 
tion of the largest eigenvalues, etc., none have provided 
the performance of the original Greedy algorithm. 

6 Overall Computational Demand 

Because tracking systems have limited computational 
as well as sensing capabilities, the ideal sensor man- 
ager will reduce the overall computational demand of 
the tracking task as well as the sensing demands. In 
Figure 5, the total computational demand of a "dumb" 
target tracking system that uses all of its sensors on the 
target with no sensor management is compared to the 
demand of systems with sensor managers (due to sen- 
sor management and the filtering of measurements from 
the chosen sensors) using either the Greedy algorithm or 
the Frequency-of-Selection algorithm (with Nc = N3). 
The three algorithms are tested on tracking systems 
with 4, 8, and 12 sensors and the performance is aver- 
aged over 1000 runs. The optimal algorithm was elimi- 
nated because it is never less computationally demand- 
ing than using all of the sensors. The Greedy /Uniform 
and Greedy/Ordered are not included because they are 
always more demanding than the Greedy algorithm. 

In the system with only 4 sensors, the dumb algorithm 
requires fewer computations than both the managed sys- 
tems, partly because the managed systems always used 
most of their sensors (the Greedy system never uses less 
than an average of 68% of the available sensors and the 
Frequency never uses less than 77%). The "break-even" 
point of the Frequency system, where the computational 
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Figure 5: A comparison of the computational demand of 
multisensor tracking systems with and without 
sensor selection algorithms. 

demand of the managed system is equal to that of the 
dumb system, is C = 0.03, which corresponds to the av- 
erage use of about 80% of the sensors in the system. The 
number of sensors used at the break-even point defines 
an operating region where sensor management results 
in a reduction of total computational demand (in this 
case, it is an average of 3.2 sensors or less). The lower 
the number of sensors, the smaller this efficient operat- 
ing region is. 

When equipped with 8 sensors, the managed systems 
used fewer calculations than the unmanaged one for 
most of the relative covariance range tested (C > 0.01). 
For the Greedy system, the break-even point is around 
C = 0.01, which corresponds to the use of about 47% 
of the sensors. The Frequency system is as good as or 
better than the unmanaged system for the entire range 
of desired covariances tested, using 85% of the available 
sensors at the break-even point of C = 0.0025. 

In the 12-sensor system, the sensor managers again out- 
perform the dumb system for most of the range tested, 
but the number of sensors used at the break-even point 
for the Greedy system is 42%, lower than that of the 
8-sensor system. As the number of available sensors in- 
creases, the number of sensors used at the break-even 
point for the Greedy system should drop dramatically, 
since its computational complexity increases faster than 
that of the dumb system. Even though the Frequency 
system outperforms the dumb system over the entire 
range of C tested, the average number of sensors used 
at the break-even point is probably less than 80%, also 
lower than that of the 8-sensor system. As more sen- 
sors are added, it is unclear how fast Nc must increase 
to maintain an acceptable level of performance, mak- 
ing predictions about the Frequency system's behav- 
ior as the number of sensors increases difficult. How- 
ever, if additional tracking tasks (data association, etc.) 
are included in the calculations, the overall computa- 

tional demand of unmanaged dumb systems is expected 
to become overwhelmingly larger than that of systems 
with these sensor managers as the number of sensors 
increases. Furthermore, while the reductions in sensor 
demand of the Greedy/Uniform and Greedy/Ordered 
algorithms do not outweigh their extra computational 
demand in these simulations, the increased cost of sen- 
sor use should eventually offset that burden as well. 

7 Conclusion 

Standard sensor manager algorithms are too computa- 
tionally demanding to be implemented in many systems. 
The use of super-heuristic search techniques can greatly 
reduce the computational complexity of existing. sen- 
sor managers. Several such approaches were explored 
and evaluated in this paper. The Frequency algorithm 
should be used when computational resources are scarce 
and the tracking models are known beforehand. When 
computational resources are not as limited, or if the 
tracking models vary greatly or are not known before- 
hand, the greedy super-heuristic algorithms can produce 
near-optimal results for a little extra computational de- 
mand. The use of these techniques will allow sensor 
managers to be implemented on a variety of platforms. 
Evaluating the robustness of performance when using a- 
priori heuristics, developing a less computationally com- 
plex heuristic for the greedy algorithms, and accounting 
for additional tasks such as data association are areas 
of future work. 
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Abstract 
We explore criteria for filter consistency and 

develop methods of determining target track lifetimes 
without truth information. Two statistical tests, a slid- 
ing window likelihood function and a quadratic ratio of 
the Wishart matrix, are applied t'o a distributed fusion 
architecture. Simulation studies are used to compare 
the performance of these tests against a measure of 
track lifetime based on using the true states. 

1. Introduction 
The ability to track multiple targets in cluttered en- 

vironments is needed in many applications such as mil- 
itary surveillance, air traffic control, and mobile robots. 
While a number of tracking algorithms assuming a cen- 
tralized processing architecture have been developed, 
distributed processing architectures are more practi- 
cal due to considerations such as reliability, survivabil- 
ity, communication bandwidth, and computational re- 
sources [4, 11, 12]. However, the merging of state es- 
timates is more difficult in distributed tracking due to 
the loss of information inherent in forming the track es- 
timates at the local processors. One of the major issues 
is accounting for the correlation between different local 
processor estimates for a common target [1, 3]. 

The distributed fusion architecture of Fig. 1 con- 
sists of several local processors and one global processor. 
Each local processor independently tracks targets in its 
surveillance region with its own sensors, using central- 
ized algorithms for tracking targets in clutter such as 
Nearest Neighbor [2], Joint Probabilistic Data Associa- 
tion (JPDA) [2], or Mixture Reduction [9, 13]. The tar- 
get state estimates from each local processor are passed 
to a global processor and possibly other local processors. 
At the global processor, a distributed fusion algorithm 
combines the local tracks to form global tracks of targets 
in the entire surveillance region. 

Because the tracking ability of the global processor 
largely depends on the quality of the target estimates 
it receives from the local processors, distributed track- 
ing systems need a mechanism to determine whether 
local tracks are lost so that these lost local target esti- 
mates do not degrade the ability of the global processor 
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Fig. 1: Distributed Sensor Fusion Architecture. 

to maintain tracks of targets. We investigate several 
methods of determining track loss based only on sen- 
sor information that is available to each local processor, 
and we apply these methods to the popular JPDA algo- 
rithm. By eliminating local tracks determined to be lost, 
the performance of the global processor in a distributed 
tracking system can be improved. 

This paper is organized as follows. The Kaiman 
filter and the JPDA algorithm are reviewed in Section 2, 
and criteria for filtering consistency are presented in 
Section 3. Derivation and implementation of two 
statistical tests — modißed log-likelihood function 
and quadratic ratio Wishart tests, are investigated in 
Sections 4 and 5, respectively. Finally, Monte Carlo 
simulation results are presented and concluding remarks 
are given in Sections 6 and 7. 

2. Kaiman Filter and JPDA 
Let x(k) and z(k) denote the vectors of the target 

state and the target originated measurement at the kth 
time interval. Suppose the target and measurement 
dynamics are determined by the known time-invariant 
matrices F, G, and H and random noise vectors w(k) 
and v(k) as 

x(k)    =   Fx(k - 1) + Gw{k) (1) 

z(k)    =   Hx(k) + v(k) (2) 

where w(k) and v(k) are independent Gaussian random 
variables with Af[0, Q(k)] and Af[0, R(k)] distributions, 
respectively. 



The predicted target state and measurement are 

x(k | Jfc - 1)    =    Fx(k - 1 | k - 1) (3) 

z(k\k-l)   =   Hx(k\k-1) (4) 

and the predicted target state and predicted measure- 
ment error covariances can be found by 

P{k\k-1) = FP(k — 1 | Ar — 1)F' + GQ(k)G'  (5) 

S(k | k - 1) = HP(k | jfc - \)H' + R(k). (6) 

The state estimate and error covariance updates are 

v(k)    =   z(k) - Hx{k | Jfc - 1) (7) 

x(k \k)   =   x(k\k-l) + K{k)v(k) (8) 

P(k\k)    =    [I-K(k)H]P(k\k-l) (9) 

K{k)    =   P{k\k-l)H'{S{k\k-l)]-1 (10) 

where v{k) and K(k) are the innovation and Kaiman 
gain, respectively. Once the target state and covariance 
estimates have been updated, they are fed back into the 
algorithm and the entire process is repeated for the new 
set of measurements at the next time step. 

When tracking in cluttered environments and the 
origin of measurements is not known, a data associ- 
ation algorithm such as the Joint Probabilistic Data 
Association (JPDA) method is needed. In JPDA, the 
combined measurement 

m(k) 

<k)    =    Y^ßjWzjih) (11) 
j=o 

is used in (7) where Zj(k) is the jth measurement at 
time k, ßj(k) is the probability that Zj(k) is the target 
originated measurement, and m(k) is the number of 
gated measurements, j = 0 denotes the possibility 
that there are no target originated measurements, with 
z0(k) = z(k | k — 1). The updated state covariance is 

P(k | k) = ßo{k)P(k \k-l) 

+ {l-ßo(k)}Pc(k\k-l) + P{k) 

P° (k\k) = {I- K{k)H) P(k\k- 1) (12) 
m(Jfc) 

P(k) = K(k) 1 J2 &(*)";(*)";(*) - v{k)v'{k) \ K'{k). 

In practice, the JPDA filter for a distributed multi- 
target, multi-sensor system can be implemented either 
sequentially or in parallel [5,10]. In the presence of clut- 
ter measurements, the sequential implementation per- 
forms better on the average than the parallel implemen- 
tation in a centralized processing architecture [5, 10]. In 
distributed architectures with distributed data associa- 
tion and filtering, the communication requirements be- 
tween the local and global processors are reduced if the 
local multi-sensor fusion algorithms are implemented in 
parallel [12]. 

3. Filtering Consistency 
The Kaiman filter is a consistent estimator in the 

absence of clutter. The consistency of a time-invariant 
estimator is defined as asymptotic convergence of the 
estimate to the true value: 

lim E {x(k\k) - x(k)\    =   0. 
fc-t-oo 

(13) 

In cluttered environments, however, the JPDA filter is 
not necessarily consistent, and the system loses tracks. 
Loss of a track occurs when the mean-square error 
(MSE) of the state estimate consistently exceeds a cer- 
tain threshold. Because the true MSE is not available 
to the processor without knowledge of the actual target 
states, we propose to develop methods for determining 
track loss in sensor fusion algorithms by exploring filter- 
ing consistency. 

Common criteria for filtering consistency are [2]: 

1. The state errors should be zero mean (unbiased) 
and error covariance should be consistent with 
the calculated covariance matrix of a filter. 

2. The innovations should have the same property 
as the state error in 1. 

3. The innovations should be uncorrelated in time. 
The first criterion is the most important, but it can be 
tested only in simulations, where the true state x(k) 
is available for comparison. In practice, only the last 
two criteria, which are consequences of the first, can be 
tested since it is possible to monitor the measurements 
z(k) arriving at each time interval. 

4. Likelihood Function Test 
Let Zk = {z(l),...,z(k)} denote the target origi- 

nated measurements up to time k. The joint probability 
density function (PDF) of Zk is the likelihood function 
of the system model [2] 

Pr{Zk)    = 
«PWE^W^^XO} 

ni2*s(oii/2 
(14) 

t=i 

The exponent of (14), known as the modißed log- 
likelihood function, can be computed recursively as 

k 

P{k) = xyws-^Mo 
»=i 

=    P{k-\) + v'{k)S-l{k)v{k). (15) 

The individual term eu{k) = i^'(k)S~1(k)i/(k) is known 
as the normalized innovation squared or Mahalanobis 
distance and is x2 distributed with m degrees of freedom 
(Xm), where m is the dimension of the measurements. 
p(k) is x2 distributed with km degrees of freedom (xlm)- 
The modified log-likelihood function (15) can be used 
to test the validity of received measurements [2], where 



the distribution of a sampling of the function is used to 
identify unlikely deviations from its expected value. 

Generally, the cumulative p(k) can not be used 
for tracks with long time histories because it becomes 
dominated by old measurements and responds very 
slowly to recent ones. In practice [2], the memory of 
p(k) must be limited to the relatively recent past. The 
sliding window approach restricts p(k) in (15) to be 
from k-N + 1 to k&s 

PAK*)   =      E    €u^- (16) 
i=k-N+l 

The fading-memory method applies an a < 1 factor to 
p(k) at each step, which results in 

k 

pa(k)  = apa(k - 1) + ev(i)  = ^a'-'MO-      (17) 
i=l 

The pff(k) of the sliding window method has a xl/m dis- 
tribution, while in the steady state, the fading-memory 
approach pa (k) is approximately a x2 random variable 
with m(l + a)/(l - a) degrees of freedom with mean 
m/(l — a) and variance 2m/(l — a2). 

In cluttered environments, there are false measure- 
ments in addition to the target originated measure- 
ments. To reduce computational complexity, gating 
is used to eliminate measurements unlikely to have 
originated from the target. The gated measurements 
are used to compute innovations, and the distribution 
of these innovations is used to determine if the track 
is lost. For instance, for a given target, if pN(k) > r 
consistently where r is such that 

Pr{xNm>r} = l-PG (18) 

where PG is the gate probability, then that target track 
is said to be lost. 

Three heuristic models are investigated to represent 
the innovation distance £„{k) in computing pN(k) or 
pa(k). With the implementation of the JPDA filter, 
the combined innovation (posterior) model [2] 

m(k) 

v{k)    =    £ ßj(k)Vj(k) (19) 
J=I 

can be used in elv{k) = v'(k)S~l{k)v(k). Since the tar- 
get originated measurement is unknown, the combined 
innovation is used. The covariance of the combined in- 
novation is "smaller" than S(k), which is the covari- 
ance of the "correct" innovation. In our evaluation of 
the combined innovation model, we replaced S(k) with 
q2S(k) where q2 is the information reduction factor for 
the Probabilistic Data Association (PDA) algorithm [2]. 
While no such factor for the JPDA has been developed, 
the 92 factor for the PDA has been observed to work 
well in predicting the performance of the multisensor 

JPDA [5]. However, our evaluation of this combined in- 
novation model shows that it performs poorly in deter- 
mining track lifetimes. Despite the use of the q2 factor, 
when clutter dominates the actual measurement (which 
generally indicates that the track is becoming lost), the 
ßj(k) factors (which are < 1) in el(k) become insignifi- 
cant, contributing lower statistical values el(k) well be- 
low the threshold. 

A model yielding higher statistical values in such 
cases is a probabilistic distance (posterior) model: 

m(k) 

el(k)   =    £ ßjikyjWS-HkWk). (20) 
j=i 

Our results show that this model gives higher statistics 
and leads to track lifetime estimates closer to the actual 
values than the combined innovation model. However, 
this model still requires the JPDA process to attain the 
ßj(k) probabilities before the track can be determined 
to be lost. 

To reduce computational complexity, averaging 
with equal probability leads to an average distance 
(prior) model: 

,     ">(*) 

m(k) 
i=i 

If the track is determined to be lost based upon this 
model, then the track can be eliminated without the 
need to compute the JPDA probabilities. 

5. Wishart Ratio Test 
Recall that for filtering consistency, the innovation 

sequence v(k) = z(k) — z(k \ k — 1) should be uncorre- 
lated in time and J\f [0, S(k | k - 1)] distributed. With- 
out loss of generality, it is convenient to consider the nor- 
malized innovation sequence ü(k) — S~1^2(k \ k — \)v{k) 
which is TV [0,7] distributed, because its covariance is the 
identity matrix and is independent of time. 

If the past N samples of the normalized innovation 
sequence {ü(k - N + 1),..., i>(k)} are being monitored, 
the maximum likelihood estimators of the identity 
covariance matrix are I(k) = jjS(k), where 

S(k)    =        E     TO-*(*)][*Ü) "*(*)]' (22) 
j=k-N+l 

j=k-N+l 

The I(k) and v{k) are the sample covariance matrix and 
sample mean of the normalized innovation sequence v{k) 
at time k. 

The joint PDF of the ^m(m + 1) elements in the 

lower triangular portion of the random matrix S(k) is 

a centered Wishart distribution Wm (n,S(k);l) with 



r\ = N — 1 degrees of freedom, where [8] 

,    „ \s(k)     2     exp{-htr[S(k)}} 
US(k);l)=\ sp-L- —L (24) 
v '    „22.    m("-1> TTr ^-J + M 2m       "»I"—1) 

2   2     1 4 

in the region of the positive definite matrices S(k), 

while outside the region Wm (ri,S(k);Ij = 0. The pa- 

rameters are the dimension m of v(k) (the number of 
measurement states), the number of degrees of freedom 
T] = N — 1, and the random matrix S(k). It is necessary 
that r)>m such that S(k) is not singular. 

In hypotheses testing, the Wishart statistics S(k) in 
(22) are complicated and not well developed because it is 
difficult to establish the confidence domain for a random 
matrix. In practice, several scalar measures of S(k) can 
be used for testing random matrices [7], such as the 
trace, the generalized variance, the maximal eigenvalue, 
the sum of all elements of the matrix, etc. Each measure 
characterizes geometrical parameters of the correlation 
ellipsoid differently. 

Note that for any fixed m x 1 vector L, provided 
that L'VL ^ 0 and the estimator S of the matrix V is 
Wishart distributed Wm(7/,5;F), then the quadratic 
ratio L'SL/(L'VL) is xl distributed [6, 7, 8]. If 
L'VL = 0, then L'SL = 0 with probability 1. There- 
fore, testing the random estimator S(k) of an identity 
matrix I is equivalent to testing the quadratic Wishart 
statistic 

v >       L,L       xv- (25) 

Without loss of generality, one can choose any fixed vec- 
tor L such that L'L = 1. Therefore, the above statistical 
test reduces to £(k) - L'S(k)L, and the corresponding 
threshold test follows along the lines of the likelihood 
function tests of Section 4. 

The choice of an L vector corresponds to different 
scalar measure characteristics [7]. In the case of choos- 
ing V = ^[1,1, • • ■, 1], the test statistic l(k) is the sum 

of all elements in the random matrix S(k). To achieve 
the maximum value of £(k), one can choose an L vec- 
tor such that it maximizes £(k) under the constraints of 
L'L = 1. This vector is the eigenvector of the matrix 
S(k) corresponding to the maximum eigenvalue of S(k). 

In [6, 7], the quadratic ratio tests perform well 
in sensor failure detection and are sensitive to false 
measurements due to higher noise levels. Therefore, it 
may be a valid statistical test to detect deviations from 
the expected distribution of innovations when tracking 
targets in high clutter densities. For tracking in clutter, 
posterior and prior knowledge of gated measurements 
can be used to represent the innovation sequence 
u(k) = z(k) -z(k\ k- 1). A posterior knowledge yields 
a combined innovation model which utilizes combined 

innovations (19) to compute a sample covariance matrix 
(22). However, a prior knowledge of equal probability 
leads to an average innovation model 

m(k) 

m(k) 
3=1 

which has the advantage of determining track loss prior 
to data association and filtering. 

6. Simulation Results 
In this section, the statistical tests of Sections 4 

and 5 are utilized to determine the track lifetimes of 
targets without knowledge of the true states. The sim- 
ulation results represent the performance of a local pro- 
cessor in the distributed architecture of Fig. 1. The 
tracking scenario consists of two targets moving in 2 di- 
mensions in straight lines corrupted by Gaussian noise 
with M [0,0.0144/]. 

The distributed tracking system consists of 2 lo- 
cal processors with 2 sensors each, with the multisensor 
JPDA implemented in parallel at each processor. Sen- 
sor noise is also white Gaussian with Af [0,0.01447]. The 
clutter density A is varied between 0.2 and 0.8, resulting 
in an average of 0.504 to 2.016 clutter points per gate. 
One hundred Monte Carlo runs are performed in each 
tracking simulation, and the track lifetime results are 
averaged for both tracks over both local processors. 

Based on truth, the processor is said to lose track of 
a target if the target originated measurements from both 
sensors lie outside the gated region for 5 consecutive 
scans. The actual value of track lifetime is determined 
as the end of this run of 5 consecutive scans. Similarly, 
when the statistical tests of the innovations from both 
sensors exceed the corresponding thresholds for at least 
5 consecutive scans, the track is considered lost and the 
track lifetime is determined. 

The likelihood function p(k) and quadratic Wishart 
£(k) tests with various implementations, are applied to 
the tracking system. The likelihood function is im- 
plemented with both sliding window pw(k) and fading 
memory pa(k) approaches. Figure 2 shows the average 
local track lifetimes versus clutter density for the actual 
track lifetimes and some of the sliding window pyv(A;) 
and quadratic ratio £(k) estimates. Results from the fad- 
ing memory pa(k) approach are not shown as it yields 
track lifetimes that are far away from the actual values 
(about 100% error on the average). This is largely due 
to the fact that the approximate distribution mentioned 
in Section 4 is only accurate when the tracking filter has 
reached steady state; however, steady state is often not 
reached when tracking in cluttered environments. 

All three heuristic models of combined innovation 
el(k), probabilistic distance el(k), and average distance 
el(k) are implemented with pnik). Because of the ß2 

factor effect, the pN(k) test with ej,(fc) yields inaccurate 
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track lifetimes and are not shown (also approximately 
100% error on average). For the quadratic Wishart l{k) 
test, both methods of choosing an L vector are consid- 
ered — sum of all elements and maximum eigenvalue of 
S(k), and each method is applied with average (prior) 
and combined (posterior) innovation models. Both prior 
and posterior models yield similar track lifetimes. 

For tracking in low (A < 0.4) clutter densities, the 
piv{k) tests yield closer track lifetimes to the actual val- 
ues. The pN(k) performs better because e2

v{k) and sl(k) 
are mainly dominated by the distance due to the actual 
measurement rather than clutter measurements. How- 
ever, the £(k) tests yield more accurate track lifetimes 
when tracking in the clutter density range 0.4 < A < 0.6. 
In this range, more clutter measurements are gated and 
the distance due to the true target measurement be- 
comes dominated by the clutter points. As a result, the 
PN(k) yields low statistical values below the threshold 
even when the system has actually lost track of the tar- 
gets. For very high clutter densities (A > 0.6), all the 
methods tend to overestimate the track lifetimes, with 
PN{k) with el(k) matching the trend of the actual track 
lifetimes the best. 

7. Conclusions 
The statistical tests of the log-likelihood function 

and quadratic ratio Wishart matrix have been investi- 
gated to check the validity of received measurements and 
evaluate the track lifetimes of targets for a distributed 
fusion tracking system. Simulation results indicate that 
the likelihood function gives more accurate track life- 
times with the sliding window rather than the fading 
memory approach. Further, the probabilistic and aver- 
age distances are the best models to implement with the 
likelihood function when tracking in low clutter densi- 
ties. However, the quadratic ratio test yields better per- 

formance for moderate to higher clutter densities, with 
the maximum eigenvalue approach giving track lifetimes 
closer to the actual values in this range. 

Greater computational efficiency is achieved if the 
average distance and average innovation models are used 
in the likelihood function and quadratic ratio tests, re- 
spectively. If either test indicates that track loss has 
already occurred, both models have the advantage of 
discarding received measurements before passing them 
to the data association and filtering process. 

Simulations show promising results that these two 
statistical tests can be used to determine track loss for 
distributed fusion architectures when truth information 
is not available. It can also be used in centralized fu- 
sion architectures by discontinuing the updates on tracks 
that have been determined to be lost to improve the 
computational efficiency of the system. 
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Abstract 

We examine the order of sensor processing in the sequential Multisensor Probabilistic Data 

Association (MSPDA) filter for target tracking applications. If two sensors of different qualities 

are used in the sequential MSPDA filter, the root mean square position error is generally smaller 

when the worse sensor is processed first. This finding regarding the order of sensor processing is 

supported by simulations of a target tracking system, and by analyses of first through sixth-order 

target process models using the Modified Riccati Equation. 

1    Introduction 

Tracking problems involve processing measurements from a target of interest, and producing, at 

each time step, an estimate of the target's current position and velocity. Uncertainties in the target 

motion and in the measured values, usually modeled as additive random noise, lead to corresponding 
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uncertainties in the target state. Additional uncertainty regarding the origin of the received data, 

which may or may not include measurements from the targets or random clutter (false alarms), 

leads to the problem of data association [1,2]. 

In this paper, we analyze the sequential implementation of the Multisensor Probabilistic Data 

Association (MSPDA) filtering algorithm [3]. It was shown in [3, 4] that sequential processing of 

information from sensors of equal quality is superior to parallel processing of the sensor informa- 

tion, in terms of computational efficiency and two performance metrics. In tracking applications, 

however, sensors are usually of unequal qualities, and tracking performance may'be affected by the 

order of processing sensor information. Thus, we investigate here the optimal order of process- 

ing sensor information (in terms of minimizing the root-mean-square position error) in sequential 

implementations of the MSPDA algorithm when two sensors of different qualities are used. The 

results of our work are applicable to problems such as tracking aircraft with radar measurements 

or tracking of submarines with sonar measurements [1, 2]. 

This paper is organized as follows. In Section 2, we review the sequential implementation of 

the Multisensor Joint Probabilistic Data Association (MSJPDA) algorithm. Simulation results are 

then presented in Section 3, followed by more analytical results in Section 4 where we consider the 

Modified Riccati Equation and discuss results for first through sixth-order target process models. 

Finally, conclusions are presented in Section 5. 

2    Sequential MSJPDA Filtering 

The multisensor multitarget tracking problem is to track T targets using Ns sensors in a cluttered 

environment. Some of the measurements arise from targets, and some from clutter; some targets 

may not yield any measurements in a particular time interval or for a particular sensor. The 

probability of detection PX
D is assumed to be constant across targets for a given sensor i. 

The dynamics of the target state x*(A;) are assumed to be determined by known matrices P*(jfc) 



and G'(fc), and random vectors w*(fc) as follows 

x*(lfc + 1) = F'(Jfe) x'(fc) + G*(fc) w*(fc) (1) 

where t = 1,..., T. The noise vectors w*(A;) are independent Gaussian random variables with zero 

mean and known covariance matrices Q'(A;). 

With Ns sensors, let Ml
k, i = 1,2,..., N„ be the number of measurements from each sensor i at 

the Jtth time interval. Assuming a pre-correlation gating process is used to eliminate some of the 

measurements [1], let m\ denote the number of validated measurements from sensor i at time A;. 

The volume of a gate at time k is chosen such that with probability P%
G the target originated 

measurements, if there are any, fall into the gate of sensor i. The target originated measurements 

are determined by 

zlk(k)=Hi(k)xt(k) + vt
i(k), (2) 

where t = 1,..., T, i = 1,..., Ns, and 1 < U < Ml
k. Matrices Hj(fc) are known, each vj(fc) is a zero 

mean Gaussian noise vector uncorrelated with all other noise vectors, and the covariance matrices 

Ri(fc) of the noise vectors v\{k) are known. For a given target t and sensor i, it is not known which 

measurement k originates from the target. That is the problem of data association whereby it is 

necessary to determine which measurements originate from which targets [1]. Measurements not 

originating from targets are false measurements (or clutter), and they are assumed to be uniformly 

distributed throughout the surveillance region with a density A. 

A sequential implementation of the MSJPDA algorithm processes the measurements from each 

sensor one sensor at a time [3, 4]. The measurements of the first sensor are used to compute the 

intermediate state estimate xf (fc|fc) and the corresponding covariance P{{k\k) for each target. The 

measurements of the next sensor are then used to further improve this intermediate state estimate. 

In processing each sensor's measurements, the actual association being unknown, the conditional 

estimate is determined by taking a weighted average over all possible associations. For 1 < t < T, 



1 < i < Ns, and 0 < k <ml
k, let ß\^.{k) denote the conditional probability that measurement k 

from sensor i is the true measurement from target t given all measurements received up to time k. 

k = 0 denotes the event that the target was not detected at time k. With xf(fc|fc) and P*(fc|fc) 

as the state estimate and covariance, respectively, after processing the data of the ith sensor, the 

update equations are 

k\{k\k) = iU(k\k) + Kj(k) £ ßlk{k)[ziM{k) - Hi(fc)x*_i(Ä|Ä)],       i = 1, • ■ • ,NS,        (3) 
li=0 

where x$(fc|fc) =xf(fc|Ä: - 1) and x^(A:|Är) =x*(Ä|Är). With Pj(Jfc|Jb) =P*(Jb|ib - 1) and Pfo(A:|Jfe) = 

P'(fc|fc), the update of the covariance matrices is 

P'(*l*) = ßi,o(k)Pli(k\k) + [l - /?J0(fc)] [i - K$(k)Hi(kj\ PU(k\k) + Kftfc) (4) 

J2 ÄA(*)»«A(*)»*A(*)T " E /3fA(*)»iA(*) E /&(*)■¥, (*)T   KS(*)T,     t = 1,... ,NS 
li=0 li-0 k=0 

A superior performance (in terms of RMS position error, track lifetime, and computational effi- 

ciency metrics) of the sequential implementation of the MS JPDA over the parallel implementation 

was shown [3, 4] when multiple sensors of the same quality were used. If the sensors are not of 

equal qualities, however, a question that arises is what is the best order to process the sensor data 

in the sequential implementation. 

3    Simulation Results 

For comparing sequential implementations of the MSJPDA algorithm using different processing 

orders of sensors with different qualities, we initially ran Monte Carlo simulations for two sensors 

tracking two targets. We considered the dynamic target model (1) for t = 1,2, with time-invariant 

matrices F, G, H, Q, and Rj. A typical state vector would include position and velocity variables. 



Hence, typical F and G are 

F = 

1 A 0 0 

0 1 0 0 
,   G = 

0 0 1 A 

0 0 0 1 

A2/2 0 

1 0 

0 A2/2 

0 1 

(5) 

for the state vectors x*(fc) = [x x y y]T{k) representing the positions and velocities of the targets 

at time kA, where A is the time step between measurements. The two targets are initially 10 

units apart and initially move in parallel directions with the same speed, but due to process and 

acceleration noise, directions and speed vary in time. There are two sensors whose measurements 

are governed by (2) with 

Hi = Ho = 
10   0   0 

0   0   10 

The process and measurement noise covariances are 

(6) 

1-              -1 " 

q   0 
,  Ri = 

ri    0 
,   R2 = 

r2    0 

0   q o   n 0    r2 

(7) 

The measurements corresponding to the sensor with covariance Ri are processed first, and mea- 

surements from the sensor with covariance R2 are processed second in the sequential MSJPDA. 

The initial states of the targets are perfectly known, and each target is always well inside the 

surveillance region. 

To evaluate tracking performance, one hundred Monte Carlo runs were performed for various 

values of clutter density A and the average RMS position error over all runs was computed. Fig- 

ure 1 shows a sampling of our results, where the following parameter values were used: A = 1, 

PG = 0.999, and PD = 1.0. The clutter density A was varied from 0.1 to 1.0. The system noise 

was varied (q = 0.0144 and q = 0.0256), and three pairs of curves were produced to compare 

sequential algorithm performance when the different sensors of different qualities were applied 



(ri,r2 = 0.0064,0.0256,0.1024). The two sensors used axe of different qualities; the better sensor is 

the one with the "smaller" noise covariance matrix Rj. With these parameter values, the expected 

number of false measurements per gate, using the steady-state Kaiman filter covariances, varies 

from 0.085 to 4.672. Prom Figure 1, comparing the trends of the RMS position error when the 

simulations are run with different system noise covariance parameters q, and with different ratios 

of ri and r2 in (7), we see that processing the worse sensor first yields smaller RMS position error. 

We used RMS position error as the performance metric because it provides a measure of tracking 

accuracy based on comparison with truth information (which is available in the simulations) and 

also allows us to compare our results with previous work in [3, 4]. The volume of the uncertainty 

ellipsoid [5] (product of the eigenvalues of the covariance matrix P) was also used as a performance 

metric in some simulations, and the results showed the same trend: processing the worse sensor 

first yields a smaller uncertainty ellipsoid. Track lifetimes were also computed in the simulations, 

but it was found that track lifetime does not seem to be affected by the order of sensor processing. 

4    Modified Riccati Equation Analyses 

Since the Modified Riccati Equation (MRE) can be used to predict the RMS position (or other) 

errors of the system [1, 2], we also applied the MRE to more efficiently evaluate whether processing 

the worse sensor first leads to smaller RMS errors for a wider range of system and scenario param- 

eters. Multisensor extensions of the MRE [3] were used to predict the RMS tracking performance 

of the dynamic target model of (l)-(2) with t = 1 (single target). 

For the appropriate time-invariant matrices F, G,H and Q,Ri,R2, the MRE iteration for the 

sequential MSPDA filter for two sensors tracking one target is 

P(A;|A:-1)=FP(A;-1|A:-1)FT +GQGT (8) 

S1(k)=HP{k\k-l)HT + Ri (9) 



K1(k)=-p(k\k-l)lf81-
1(k) (10) 

Pt{k\k) = P(k\k - 1) - Cl Ki(fc) Sx(fc) Ki(Ä;)T (11) 

Sa(Jfe) =HPi(A;|A;)HT + R2 (12) 

K2(Jfc)=Pi(fc|A;)HTS2-
1(A;) (13) 

P(Jb|Ä!) = Pi(Jb|fc) - ClK2(k) S2{k) K2(k)T (14) 

where 

Cl = PDPG-qi+<b(W£) (15) 

Cg = PDPG-gi+©(AV£) (16) 

The qi and q2 functions are defined in [1, 2] and depend on the dimension of the system, PD, A, 

and Vk, the volume of the validation region (gate) at time k. 

In the time-invariant case considered here, it was found [2] that for most values of PD and 

A, the equations (8)-(14) can be iterated until the covariance P(k\k) converges to a steady-state 

covariance matrix P. No general stability results are known for the MRE, but numerical convergence 

and divergence have been observed. In order to obtain a scalar tracking performance metric, the 

steady-state RMS position error can be extracted [2] from the sum of the diagonal elements of the 

P matrix corresponding to target position 

RMS = e(PD,\)=       E   diaS(?) <17) 
y position 

Using the MRE for a one target-two sensors scenario, we computed the steady state error covariance 

P = p(Jb|jfc) = P(jfc - l|Jfe - 1) (18) 

which is the same definition of RMS position error used in the simulations of Section 3. 



4.1    One, Two, and Three-Dimensional MRE 

We considered tracking systems in one, two, and three-dimensions, with appropriate system matri- 

ces (5), (6), and (7). In addition to numerically iterating the MRE in equations (8)-(14) in order 

to obtain the RMS position error, we also solved the steady-state equation (18) under particular 

assumptions. The parameters used were the same as in the simulations discussed in Section 3. The 

state vector consisted of position, or position and velocity, for the one, two, and three-dimensional 

tracking scenarios. 

We first consider the case when the state vector consists of position and velocity. Under sim- 

plified conditions where Q, Ri, and R2 are diagonal matrices, as in equation (7), and if the initial 

position covariance matrix P(0|0) is block diagonal, the steady state position error covariance ma- 

trix P will also be block diagonal. Expressions for the steady-state block diagonal components of 

P under these special circumstances were given in [6] for second, fourth, and sixth order system 

models where the state vectors consist of position and velocity. 

The steady-state solution results for the fourth order system model are shown in Figure 2 for 

tracking in two dimensions, and compared with the results obtained by MRE iterations (8)-(14). 

The RMS position error is shown as a function of the clutter density A for three sets of sensor 

parameters: ri = r2, n > r2, and r\ < r<i- When the two sensors are of different qualities 

(f"i 7^ T2), the computed RMS position error depends on the order of sensor processing, giving the 

same trends as observed in the simulations: processing the worse sensor first (ri > r2) results in 

smaller RMS position error (better performance). Similar results were obtained for second and 

sixth order target process models. 

We also evaluated the MRE (8)-(14) with the state vector consisting of position only. The one- 

dimensional model reduces to a scalar system discussed here, while the two and three-dimensional 

models have diagonal entries (again, under assumptions that Q, Ri, and R2 are diagonal, and 

P(0|0) is diagonal) defining the RMS position error in (17), being similar to the scalar system. For 
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the scalar system, 

F = G = H = 1,       Ri=ri,       R2 = r2,       Q = q, r1,r2,q>0. (19) 

The solution of P in (18) as a function of q, n, r2, C\, and C\ was discussed in detail in [6]. 

This was not a closed-form solution, since C\ and C\ in steady state depend on q, n, and r2 in 

a complicated way, and to obtain numerical solutions, we used the steady-state values of C\ and 

C| from MRE iterations (8)-(14). Under our assumptions that Q, Rx, and R2 are diagonal, and 

P(0|0) diagonal, however, it may be possible to map out approximate functions for C\ and C\ in 

steady state in terms of q, n, r2, and clutter density A. The system noise q and sensor parameters 

ri and r2 affect the steady state covariance error P, and therefore the RMS position error. The 

RMS position error as a function of clutter density A for first, second, and third order system 

models showed trends that are similar to those of Figure 2. 

4.2    Results over Larger Parameter Ranges 

So far, we have shown that for several sets of sensor parameters, the system tracking performance 

in terms of the RMS position error improves if the worse sensor is processed first. It is of interest, 

however, to investigate how the order of sensor processing affects the RMS position error over 

a wider range of system parameters: sensor parameters rx and r2, system noise q, and clutter 

density A. Hence, we used MRE numerical iterations to efficiently evaluate the RMS position error 

over large parameter ranges. 

We varied the ratio of the sensor parameters n/r2 between 0.01 and 100, while keeping the 

parameter re of the equivalent sensor (£ = £ + ^) at re = 0.01. Figure 3 shows for a second- 

order, two-dimension system, how the RMS position error, normalized to the RMS position error 

when both sensors are equal {r\/r2 = 1), varies with ri/r2 for q = 0.01 and 0.1, and A = 0.001, 

0.2, 0.5, and 1.0. The results are given only for the parameter values where the MRE iterations 

converge.   Results for other first through sixth order process models are similar.   In the three- 



dimensional case, the range where processing the worse sensor first gives smaller errors is narrower, 

and the improvements are less significant, as shown in Figure 4, where the lower plot is an expanded 

view for 0.5 < n/r2 < 2. The range where rx/r2 > 1 corresponds to the case when the worse sensor 

is processed first. As expected, the RMS position error increases with increased system noise q and 

with increased clutter density A. 

Qualitative behavior over a large range of n/r2 is mostly affected by the system order and noise 

q. If the system noise q is low, no significant differences in the RMS position error can be observed 

for different orders of processing sensor information - the curves are almost symmetrical around 

the center point ri/r2 = 1. For larger noise q, the RMS position error exhibits a local minimum at 

or slightly to the right of the r\jr2 = 1 point. Around this point, there is a range of ri/r2 values 

where the RMS position error is smaller if the worse sensor is processed first. For example, in the 

two-dimensional, second order case (Figure 3), the error for ri/r2 = 10 is smaller than the error 

for r\jr2 =0.1, and in three-dimensional, third order case (Figure 4), the error for r\/r2 = 2 is 

smaller than the error for ri/r2 = 0.5. When rijr2 > 1, a region of r\/r2 can be found when 

processing the better sensor first yields smaller RMS position error, as well as the region where 

order of processing sensor information does not affect the RMS position error, as can be seen in 

Figure 4. The shape of the obtained curves and the size of regions highly depend on clutter density 

A, system noise q, and system order. This leads to a conclusion that whenever sequential MSJPDA 

filtering is to be applied with unequal sensors, it would be beneficial to know the ratio r\/r2 of 

sensor characteristics, as well as estimates of A and q, so that the processing order can be set up 

giving the minimal RMS position error. 

5    Conclusions 

We have analyzed the order of sensor processing in the sequential implementation of the MSJPDA 

filter.   Our results indicate that processing the worse sensor first generally yields smaller RMS 
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position error if the two sensors are of unequal but comparable quality. Though counter intuitive 

at first, this trend was confirmed in one, two, and three-dimensional models (first through sixth- 

order systems) of the MSPDA filter using both the MRE numerical algorithm and its steady-state 

solution under particular conditions. A full explanation of this trend is difficult, because of the 

complexity of the data association process built in the MSPDA algorithm, but one explanation 

would be that processing the best sensor last improves tracking performance of the sensor system 

as a whole. Analyses over ranges of sensor parameters show that tracking system performance of the 

sequential MS JPDA filter, in terms of the RMS position error, favors using sensors of comparable 

qualities, and that processing the worse sensor first gives better results if the sensor qualities do 

not differ by a large amount. 
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List of Figure Captions 

Figure 1: Average RMS position error from Monte Carlo simulations as a function of clutter density. 

Figure 2: RMS position error in a two-dimensional model obtained from solution of (18) and from 

MRE iterations (8)-(14) for a fourth-order system. 

Figure 3:  RMS position error from two-dimensional (state vector:   [x y]T) MRE iterations, for 

different q, r\/r2, and A, with equivalent re = 0.01. 

Figure 4: RMS position error from three-dimensional (state vector: [x y z]T) MRE iterations, for 

different q, n/r2, and A, with equivalent re = 0.01. 
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Abstract 

Surveillance systems tracking multiple targets often do not have the sensing or computational resources to apply 

all sensors to all targets in the allocated time intervals. Hence, sensor management schemes have recently been 

proposed to reduce the tracking demands on these systems while minimizing the loss of tracking performance 

by selecting only enough sensing resources to maintain a desired covariance level for each target. However, 

covariance control algorithms to date have not addressed the presence of clutter measurements and the need 

for data association in those cases. This paper presents a method of reducing the effects of data association on 

covariance control algorithms through the addition of a scalar "loss of information" term. Monte Carlo simulations 

show that without this term, the covariance control system is unable to maintain the desired covariance, resulting in 

a much larger actual covariance level and ultimately a much higher rate of track loss. Use of the loss of information 

term generally restores system performance. Further insights guide the selection of effective covariance goals. 



1    Introduction 

The application of multisensor fusion to surveillance systems has provided superior tracking performance at the cost 

of increased sensing and computational demands. Ideally, all available sensors can be applied to all targets to achieve 

the most accurate state estimate of each one. However, most sensors can track only a finite number of targets in 

a single sampling period. Because of this, not all targets can be tracked with all sensors and improving tracking 

accuracy for one target may result in the degradation of track accuracy for a different target. Furthermore, each 

measurement imposes computational costs on a tracking system with a finite amount of processing capacity. What 

is needed is a sensor management technique that can balance tracking performance with available resources [11]. 

Sensor managers can control a variety of system parameters including which sensor combinations are used in 

a multi-sensor system [14, 15, 7]; sampling frequency or revisit time [1]; and sensor modes or waveforms [9]. In 

[7], a system is presented that manages system resources by selecting individual sensors to achieve a specified state 

estimate covariance for each target, rather than attempting to use all sensors on all targets. The system separates 

sensor management into a covariance control problem and a sensor scheduling problem (see Figure 1). The scheduler 

prioritizes sensing actions and executes them as time allows. Low priority actions may be delayed until future scans or 

may be dropped altogether. The effects of such delays have been studied in [13]. The covariance controller maintains 

the covariance level of each target estimate to within the desired limit while reducing system resource demands. 

In many environments, the tracking task is complicated by the presence of clutter measurements and multiple 

(possibly closely-spaced) targets. When this occurs, each measurement must be correctly associated with its origi- 

nating target or classified as a false or clutter measurement. This process is known as data association. The resulting 

uncertainty about measurement origin decreases the accuracy of the state estimate of each track and can ultimately 

lead to track loss. 

Several data association methods have been proposed, including the Probabilistic Data Association Filter (PDAF) 

[2]. The state estimate covariance calculation for this filter depends on the actual measurements received, making it 
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Figure 1: Block Diagram of a Tracking System with Covariance Controller (Sensor Selection Algorithm). 

stochastic in nature, but can be approximated by the addition of a scalar "loss of information" term to the standard 

Kaiman filter equations [4, 10]. While single-sensor management systems have been designed for the PDAF (e.g. 

[1. 9]), no sensor managers to date have been designed around the multisensor extension of the PDAF [12, 6]. This 

paper expands the covariance control algorithms presented in [7] to account for the loss of information encountered 

in the multisensor PDAF. 

The paper is organized as follows. The Kaiman filter is summarized in Section 2. The basic covariance control 

algorithm is described in Section 3. Section 4 describes the Probabilistic Data Association Filter, and the loss of 

information associated with the PDAF is presented in Section 5. Algorithms using this loss of information are 

derived in Section 6 and simulation results of these algorithms are presented in Section 7. Section 8 will discuss the 

implications of those results for the selection of desired covariances before the final conclusions are given in Section 9. 

2    Kaiman Filter 

Assume that the tracking system has N, sensors. There are 2N- possible combinations or subsets of those sensors 

that can be selected by the multisensor manager. The ith possible subset is defined as $< and NSi is the number of 

sensors in that combination. The input from each selected sensor is used to update the state estimate of the target. 



The sequential Kaiman filter is an algorithm for combining multiple inputs from stochastic or linearized systems 

to form an estimate in a state space representation. The Kaiman filter is based on the following assumptions about 

the target and measurement systems [2, 3]: 

x(k)   =   Fx(k-l)+Gu(k-l) + w(k-l) (1) 

Zj(k)   =   Hix(k)+Vj(k),     j = l,...,Ngi (2) 

where s(Jfe) is the current state of the target; F, G, Hj are known system matrices; u(k) is the control signal; and 

Zj(k) is a measurement of the target from the jth sensor in $i. w(k) is a variable representing process noise or 

higher-order motion not modeled by F, and Vj(k) is a variable representing measurement noise in sensor j. Both 

w(k) and Vj(k) are assumed to have zero-mean, white, Gaussian probability distributions. 

Since w(k) and Vj(k) are zero-mean noise processes, the target states and measurements in the next time interval 

can be predicted by 

i(Jfc|Jk-l)    =   Fx(*-I|*-1) + Gtt(&-1) (3) 

Zj(k)   =   Hj£(k\k-1) (4) 

The input u(k) is considered known and will be omitted in future equations because it can be easily reinserted. The 

quantity Vj(k) = ij{k) - Zj(k) is known as the innovation. The covariance of the state and the innovation predictions 

are 

P{k\k-1)   =   J?P(jfc-l|*-l)F' + Q(*-l) (5) 

Si(ifc)   =   HiP{k\k-l)H[ + Ri(k) (6) 



Sj{k)   =   HjPj-i(k \ k)H'j + Rj(k),     j = 2,...,Nai (7) 

respectively, where Q(k) is the process noise covariance and Rj(k) is the measurement noise covariance for the jth 

sensor. Pj(k | Jfcj is the updated covariance resulting from sensor j as defined in eq. (10) below. 

The sequential algorithm runs a separate Kaiman filter for each sensor in the combination, propagating its 

estimate to the next filter [16]: 

Xl(k\k)    =   x(Jfc|fc-l) + tfi(A;)(zi(fc)-tfiä(*l*-l)) 

ij(k\k)   =   xj..1(k\k) + Ki{k){zj(k)-Hjxj-1(k\k)),     j = 2,...,NSi (8) 

x(k\k)    =   isJkW 

where 

Ki(k)    =   P(k | A; - l)2-r{Sfl(*) 

Kj(k)   =   PjSklQH'jSrHk),     j = 2,...,N.t (9) 

The state covariance is updated for each filter by 

Pi(*|fc)    =    (I-Kl(k)Hl)P(k\k-l) 

Pj(k\k)    =    (i-KjWH^Pj-iiklk),     j = 2,...,Nai (10) 

P(k\k)    =   PN.t(k\k) 

Once the state and covariance estimates have been updated, they are fed back into the algorithm and the entire 

process is repeated for the new set of measurements at the next time step. Alternatively, the covariance update can 

be calculated in a single step using the inverses of the covariance matrices [3]: 



p-^fcl*)    =   P-1(k\k-l) + '£H'jR-lHj (11) 

where 

Jt   =   J^H'JRJ'HJ,   i = l,...,2»' (12) 

is the sensor information gain for the ith combination of sensors. 

3    Covariance Control 

The covariance control approach to sensor management assigns a desired state estimate covariance goal to each target 

and selects combinations of sensors to meet those goals at each sampling period. By attempting to meet these goals 

rather than using all sensors on all targets, the demands on sensors and computational resources can be reduced. 

Figure 1 shows the block diagram of the tracking system proposed in [7]. Control of the covariance of the system 

is implemented via a sensor selection algorithm. The sensor selection can be determined based on the difference 

between the inverses of the predicted covariance in (5) and the desired covariance Pd(k). Replacing the updated 

covariance matrix in (11) with the desired covariance and solving for the necessary sensor information gain, we see 

that we want J* to equal E, where 

E   =   P^{k)-P-l{k\k-l) (13) 

The selected sensor combinations are then passed to a scheduler which executes the requests as time and resources 

permit. The sensors then pass measurements to the Kaiman filter, which produces updated state and covariance 

estimates, as well as state and covariance predictions for the next sampling period, for each target. 

In actual target tracking applications a number of other tasks are also performed, including data association 

(when clutter measurements or closely-spaced targets are present), track initiation and deletion, and registration [3]. 



These tasks compete for sensor and processor time as well, and would also fall under the control of the sensor 

manager. In the initial development of sensor managers in [7], only the state estimation task is considered. With this 

assumption, the controller's job is to regulate the sensing resources used by the Kaiman filter to reduce the demands 

on the tracking system due to state estimation. 

The covariance control algorithm used in this paper is the Eigenvalue/Minimum Sensors Algorithm [7]. It requires 

that the sensors used produce an updated covariance that is within the desired covariance at all times. This will 

result in the difference, Pi - Pi, where Pi is the updated covariance after using sensor combination i, having all 

positive eigenvalues (as well as the difference Jt - E). While adding sensors will eventually achieve this goal, the 

computational demand on the Kaiman filtering algorithm will increase linearly with the number of sensors. Since 

the goal is also to reduce the computational load on the tracking system, the sensor combination with the fewest 

number of sensors that produces all positive eigenvalues in the covariance error should be used at each scan. The 

sensor information matrices Jj can be calculated off-line and stored in an on-line library to reduce the computational 

demand of sensor selection. 

4    Probabilistic Data Association Filter (PDAF) 

Many sensing systems (such as radar) can receive false measurements in addition to returns from targets of interest. 

These clutter measurements can be due to noise in the sensing system itself, multi-path reflections from the target, 

or returns from objects that are not targets of interest. Clutter measurements are typically assumed to be uniformly 

distributed and thus the number of false measurements for a given area will be a Poisson distribution parameterized 

by the clutter density, A. 

Probabilistic Data Association [2] begins by defining the normalized distance squared between each measurement 

z((k) (the sensor index j is suppressed here to simplify the notation) and its predicted value z(k) as 



d(ut)   =   t/tWS-HQutik),   l = l...Mk (14) 

where Mk is the number of measurements received by an individual sensor at time k. This distance is used to 

eliminate measurements that are unlikely to be target-originated by defining a gate as a region around the expected 

value of the measurement such that d{vt) < 72. The measurements inside the gate are processed by the PDAF while 

measurements outside the gate are ignored. The gate size, 7 is chosen so that the true measurement will be found 

inside the gate with some high probability, usually > 99%. The volume of this region at time k can be calculated as 

Vk   =   cm7
m|S(*)|1/2 (15) 

where m is the dimension of the measurement and cm is the volume of an m-dimensional unit sphere. 

The PDAF derives an estimate for the state by replacing the innovation with a weighted sum of gated innovations, 

known as the combined innovation, 

mj. 

v   =    2>Ä (16) 
t=\ 

where 0t is the probability that measurement zt is the true measurement of the target and mk is the number of 

gated measurements at time k. These probabilities can be calculated as 

Kg&   e = 1-mk 

ßt(k)   =   < (17) 

.  , V ImL        t  — 0 

d<.»t) 
et   =   e ""a 



A|27rS(fc)[x/2(l -PDPG) 
b   =     

PD 

where pD is the probability of detecting the target and pG is the probability that the detected target will fall within 

the measurement gate described above. 

The state covariance resulting from using the combined innovation is 

P(k\k)   =   P(k\k-l)-(l-ßo)K(k)H(k)P(k\k-l)+P(k) (18) 

P(k)    =   K(k) Y,ßtM-^)u'{k) 
.1=1 

K'(k) 

All other values in the Kaiman Filter are calculated as discussed in Section 2. 

5    Loss of Information in the PDAF 

The presence of ß0 and P{k) in eq. (18) change the calculation of the covariance from a deterministic equation into 

a stochastic one (because both terms depend on the actual data received). In [4], a method of predicting tracking 

system performance without resorting to Monte Carlo simulations is proposed. It calculates the expected value of the 

covariance, given the previous conditions of the filter. The resulting equations are then evaluated for each sampling 

period to predict average RMS error, track lifetime, etc. We propose to use the single period performance estimate 

to improve the accuracy of sensor selection for covariance control algorithms. [4] begins with the expected value of 

the covariance calculated in eq. (18) 

E[P(k\k)\Zk-l,P(k\k-l)]   =   P(k\k-l)-(l-E[ßo})K(k)H(k)P(k\k-l) + E[P(k)} (19) 

where 



E[ßo]    =    l-PDPG (2°) 

E[P(k)]   =   K(k)E tM-»W»'(*). 
U=i 

*"(*) 

=    (qi-q2)K(k)H(k)P(k\k-l) (21) 

The variables gi and g2 are scalar, and expressions for them are derived in [4]. With some final cancelations, and 

considering that E[ß0] « qi under typical conditions, 

E[P(k\k)\Zk-\P(k\k-l)]    =    (I-q2K(k)H(k))P{k\k-l) (22) 

[4] further shows that q2 varies between 0 and 1. Because it reduces the effectiveness of the sensor measurements, 

q2 is known as the "loss of information" term. The calculation of q2 is computationally demanding and will be 

calculated off-line when used in the covariance control algorithms. 

Clearly, if the loss of information due to data association is ignored in covariance control techniques, the sensor 

manager will overestimate the effect of each sensor on the state estimate covariance and the sensor selections will 

consistently fail to meet the covariance goals. To counter the loss of information effect on sensor management, this 

research uses the average performance of the data association algorithms in the presence of clutter and incorporates 

the resulting scalar term into the sensor models. 

6    The Augmented Covariance Control Algorithm 

In [4] the q2 term is shown to be a function of the expected number of gated measurements (which in turn is a 

function of the innovation covariance, S(k)) and the probability of detection. Using this information, it is possible 

to pre-compute a table of possible q2 values for use in an online algorithm. The values from this table are shown in 
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Figure 2: Loss of Information as a function of probability of detection and the expected number of measurements. 

Figure 2. 

The algorithm begins by calculating the predicted state of the target using eq. (3) and the covariance of that 

prediction using eq. (5). It then estimates the loss of information term by calculating the expected number of 

measurements, AV(Jfc), and using that information to linearly interpolate the q2 term from the previously calculated 

table. Note that while the expectation is exact for the first sensor in $i, it is only an approximation for the 

sensors that follow, since each depend non-linearly on the updated covariance resulting from the previous sensors. A 

method called hybrid approximation [5, 10], is a more exact representation, but is more computationally demanding. 

However, it is expected that the value of q2 will be underestimated for all but the first sensor, since the algorithm 

only calculates the q? term based on the original prediction covariance. It does not account for the smaller a priori 

covariance (P,_i in eq. (10)) seen by all of the sensors after the first one. 

Once the loss of information terms have been calculated, eq. (22) is used to estimate the effect of each sensor 
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Figure 3: Block Diagram of the augmented Covariance Controller System. 

on the target covariance. This information is used by the Eigenvalue/Minimum Sensors algorithm to choose an 

appropriate sensor combination for the target. The sensor combinations are formed a single sensor at a time using a 

greedy search heuristic to reduce the computational demand of sensor selection (see [8] for a more in-depth discussion 

of the computational demand of sensor selection and methods of reducing that demand). The Eigenvalue/Minimum 

Sensors algorithm itself is slightly modified from the one presented in [7, 8]. Because the PDAF is derived from 

the standard Kaiman filter algorithms, and the scalar loss of information term can not be applied to the covariance 

update of the information filter, the information filter equations (eq. (11)) are abandoned and replaced with those of 

the standard Kaiman filter (eq. (10)). Instead of the difference in eq. (13), the inputs to the augmented covariance 

controller consist of the desired covariance, the prediction covariance, and the loss of information terms (see Figure 3). 

7    Simulation Results 

This section presents the results from Monte Carlo simulations using the covariance control techniques discussed in 

this paper. The tracking situation presented is two targets moving in the x - y plane in nominally straight lines 

corrupted by acceleration or control noise. This noise is zero-mean, white, and Gaussian with covariance matrices of 

0.05 times the identity matrix. The target states to be tracked (estimated) consist of both the position and velocity 
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of each target, i.e. [x x y y}'. The desired covariance for Target 1 is diagonal with a position variance of 0.02 and a 

velocity variance of 1. The desired covariance for Target 2 is also diagonal with a position variance of 0.02 but has 

a smaller velocity variance of 0.5. Each simulation is run for 500 scans. 

For the purpose of these simulations, the targets are assumed to be non-interacting, which means that the distance 

between the two is large enough that the measurement of one will not lie in the gated region of the other. While 

this is not always the case in actual tracking applications, interacting targets result in a non-uniform clutter density 

which is not modeled by the q2 term. Future work will determine the effect of closely-spaced targets on the current 

covariance control algorithm and develop methods to reduce or eliminate that effect. 

The simulations compare two tracking systems, each consisting of 8 sensors measuring both the x and y position 

of each target. While the sensors' accuracy in a given direction varies, they have roughly equal overall abilities, 

defined as each having a position information matrix with equal volume, where the position information matrix for 

sensor j is defined as JPi, such that 

JPj    =   HpJjH'p,   j = l,...,N, (23) 
r 

10   0   0 
p 

0   0    10 

Jj is the sensor information gain as defined in eq. (12), applied here to individual sensors only, and Hp extracts the 

position "information" from the overall sensor information gain. Both systems manage the sensing demand with the 

Eigenvalue/Minimum Sensors covariance control technique, but while one uses the loss of information term to model 

the effects of data association, the other does not. The measurement noise for each sensor is 0.04 times the identity 

matrix. Clutter density A is the same for each sensor. The simulations vary clutter density from A = 0.2 to A = 1.0 

in steps of 0.2 and are averaged over 200 runs each. This clutter density range leads the expected number of gated 

measurements varying from 5 to 27 measurements for target 1 and from 3 to 15 measurements for target 2, assuming 
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that the desired covariance goals are met for each target. 

The simulations record the actual minimum eigenvalue of the difference between the desired and updated co- 

variance as well as that of the difference predicted by the sensor selection algorithm with and without the loss of 

information term. The predicted difference is used by the covariance controller to select the appropriate sensor com- 

bination. Because of this, successful covariance control depends on the accuracy of that prediction. The minimum 

eigenvalue of the covariance difference {Pd - Pi) is used as the metric since the Eigenvalue/Minimum Sensors algo- 

rithm attempts to drive all eigenvalues greater than zero, thus the smallest eigenvalue will be positive if the algorithm 

achieves this goal and negative if it does not. The smallest eigenvalue of the covariance difference is normalized by 

that of the desired covariance to provide a more intuitive measurement of the accuracy of the control algorithm. 

The covariance metric is only evaluated while the target is actually being tracked and does not reflect covariance 

trends after the target is lost. Track loss is declared when target-originated measurements have not been gated for 

5 consecutive scans or when the actual RMS position error exceeds 10 times the standard deviation of the position 

error estimate for 5 consecutive scans in either the x or the y direction, where the standard deviation is the square 

root of the state estimate variances corresponding to the x and y position estimates, respectively. 

Figure 4 shows the average covariance difference (normalized by the minimum eigenvalue of the desired covariance 

matrix) for both targets without the use of the q2 term. When it is not used, the minimum eigenvalue of the actual 

covariance is 20 to 170 times that of the desired covariance, meaning the covariance goal is not achieved at any clutter 

level. Furthermore, the minimum eigenvalue of the predicted covariance difference is always positive, meaning that 

the controller thinks that it will achieve the desired covariance at every scan. 

Figure 5 shows the average normalized covariance difference for both targets when the q2 term is used. The desired 

covariance goals are easily achieved, resulting in a positive definite covariance difference, in all but the highest clutter 

level. This difference is never more than 45% of the minimum eigenvalue of the desired covariance. Additionally, the 

predicted difference between the desired and updated covariance is never more than 25% of the minimum eigenvalue 
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Normalized Covariance Error w/o o^ vs Clutter Density 
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Gutter Density (X) 

Figure 4: Covariance differences for Targets 1 and 2 (normalized by the minimum eigenvalue of the desired covariance 

for each) when the sensor management algorithm does not take into account the effects of data association. 

of Prf. Finally, the error between the predicted difference and the actual difference is also never more than 25% of 

the smallest eigenvalue of the desired covariance. It is interesting to note that even though the average predicted 

covariance difference when A = 0.6 and A = 1.0 is negative, the average number of sensors used is below the maximum 

of 8 (shown in Figure 6). This, coupled with the fact that the average predicted covariance is negative less than 10% 

of the time, implies that the average difference is affected by large covariance errors relatively rarely, but that the 

size of those errors can be quite large. 

Figure 6 is a graph of the average number of sensors used while the target is being tracked versus the clutter 

density. Even though the predicted covariance difference is generally positive for both algorithms (meaning that 

each algorithm expects to meet the desired covariance goal), the covariance control algorithm without the g2 term 
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Normalized Covariance Error w/ qj vs Clutter Density 

0.5 0.6 0.7 
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Figure 5: Covariance difference for Targets 1 and 2 (normalized by the minimum eigenvalue of the desired covariance 

for each) when the sensor management algorithm uses the loss of information factor g2 to model the effects of data 

association. 
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Average Sensor Use vs Clutter Density 
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Figure 6: Without the q2 term, the sensor manager assigns fewer sensors to the tracking task and thus fails to achieve 

the desired covariance goals. 

uses only two sensors on average at each time scan, while many more sensors are selected by the covariance control 

algorithm using the q2 parameter. Thus without the loss of information term, the covariance control algorithm 

overestimates the sensors' abilities and fails to allocate enough sensing resources to accomplish the tracking goals. 

With the q-2 term, the covariance control algorithm apparently underestimates sensor abilities, shown in Figure 5 

by the consistently overly pessimistic estimation of the covariance difference by the algorithms (dashed lines) when 

compared to the actual differences (solid lines). As described in Section 6, this performance is expected, since only 

the original prediction covariance is used to calculate q2 for each target/sensor combination, while the sequential 

Kaiman filter reduces the covariance of the state estimate after each sensor is used. This effect can be reduced by 

recalculating the q? term after each sensor is picked. However this practice will increase the computational demand 

of the covariance controller and make it less robust to possible changes in sensor execution order by the scheduler. 
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Figure 7: Combined track loss for both targets with and without the qi term. 

Figure 7 shows the cumulative number of tracks lost at each time scan over the 200 Monte Carlo runs at each 

clutter density level. Note that track lifetime is dramatically improved by the use of the loss of information term. 

From [4. 10]. the probability of track loss is a function of the number of gated measurements and thus a function of the 

prediction covariance and the clutter density. Since this probability grows with the number of gated measurements 

(and thus with the size of the state estimate covariance) the poorer track loss performance of the tracking system 

without the tj-, term is a result of the large state estimate covariances produced by overestimating the effectiveness 

of each sensor. Note that in all cases, track loss occurs even though the average number of sensors is less than the 

maximum (8) and in the case of the g2-based algorithm, both the predicted and actual covariances generally meet 

the desired covariance goals. Thus control of the state estimate covariance does not guarantee the elimination of 

track loss. 
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8    Implications for the Selection of Pd 

The strength of the covariance control approach is that a target-specific covariance goal can be set independently of 

other parameters in the tracking task. This goal can be the reduction of the state estimate covariance to accurately 

fire a weapon at a target or to avoid confusing the identity of closely spaced targets. In these examples, the desired 

covariance is determined by external factors (missile lock requirements or target spacing). When these external 

factors are missing, the selection of Pd is less obvious. While ultimately the covariance of each target should be as 

small as possible, limited resources require that some covariances will be larger than others. Obviously for lower 

priority targets the desired covariance should be "large" to avoid taking valuable sensing resources from higher 

priority objects. When data association is not required, this covariance can be set arbitrarily high. In the presence of 

clutter measurements, however, a large covariance increases the gate size and ultimately leads to a high probability 

of track loss. This drastically reduces the freedom in choosing Pd. 

Additionally, the variation in sensor abilities in different dimensions can complicate the derivation of a realistic 

and effective desired covariance. States that are not directly measured (the velocity states x and y in the simulations 

above) are relatively insensitive to the use of sensors, since most of the sensing information goes to those states 

that are directly sensed. Furthermore, correlations between states can impose additional constraints on the actual 

covariance that are more demanding than the desired covariance goal. 

In these simulations, tracking performance for both targets is roughly the same, in spite of the difference in the 

desired velocity variance for each. This is mostly because the desired velocity variances are set much higher than 

those generally reached by the actual state estimate covariance. While the desired velocity variances were 1.0 and 0.5 

for targets 1 and 2, respectively, the actual average velocity variance was much closer to 0.1 for the tracking system 

that used the q2 term. They were much higher in the system that did not use the loss of information term, but 

the size of the position variance differences in those cases was generally as large or larger than the difference in the 

desired velocity variances. Thus because the desired velocity variances were set higher than the velocity variances 
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indirectly imposed by the desired position variance settings, the overall desired covariance goal was essentially the 

same for both targets. 

If the desired velocity variance is set lower, to 0.03 for example, then the number of sensors used will increase 

dramatically. Since most of the information from the sensors will go to the position estima1!e, the actual position 

variances will be 1 - 2 orders of magnitude smaller than the desired value of 0.02, while the velocity variances will 

be just under 0.03. Thus the setting of an aggressive velocity variance limit results in a much more demanding de 

facto limitation on the position variance. However, unless external factors require such a precise estimate of the 

velocities, it is unwise to set the velocity variances so low, since the sensors can not directly affect those values. Even 

though the velocity variance does contribute to the size of the gated volume for each sensor and thus can increase 

the number of gated measurements, it is more efficient to limit the gated volume by reducing the size of the position 

variances, which are more sensitive to the use of sensors than those of the velocity. 

While a rigorous derivation of efficient desired covariance goals remains an unsolved problem, general constraints 

can be used to approximately calculate an efficient desired covariance. Obviously the shape of the desired covariance 

should be small in the states that are directly measured to reduce the effects of data association, while large in 

states that are not measured to avoid unnecessarily high sensing demands. The desired covariance should also be 

scalable to reflect a range of target priorities. The update equation of the information filter in eq. (11) can be used 

to calculate a rough desired covariance in the absence of external goals. 

P£    =   el + ^H'jRJ^Hj (24) 

Pd   =   aPd0 

where 0 < r, < 1 is the relative number of targets that sensor j can track compared to the overall tracking capacity 

of the system. The sum Y,*=i cjH'jRJlHi reflects the information about each state that is measured by the sensors. 
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The factor Cj provides an estimate of the availability of each sensor during a given scan - the more capacity a sensor 

has the more likely it will be available for a sensing assignment at any given moment. Since this sum generally 

results in a singular matrix, the scaled identity matrix el is added to insure that Pdo is positive definite. By setting 

0 < t « 1, the portions of the desired covariance corresponding to states that are not directly measured by the 

sensors are set to a large value to avoid expending resources on them. Pdo can then be multiplied by the scalar factor 

a to vary the size of the covariance to reflect the priority of each target; a will be small for high priority targets and 

large for low priority targets. 

9    Conclusion 

While single-sensor management systems have been designed to work with the Probabilistic Data Association Filter, 

no sensor managers exist for multisensor extensions of this tracking algorithm. In particular, the use of the PDAF 

results in a loss of effectiveness for each sensor due to the uncertainty in origin of each measurement. While the 

effect of this uncertainty on the state estimate covariance depends on the actual received measurements, and is thus 

generally stochastic, it can be approximated by the addition of a scalar loss of information term to the standard 

Kaiman filter covariance update equation. Ore multi-sensor management approach is covariance control, which 

attempts to maintain a desired state estimate covariance goal for each target. This paper augments an existing 

covariance control technique through the addition of the loss of information term, allowing the algorithm to evaluate 

the reduced effectiveness of each sensor. Monte Carlo simulations show that without this term, the covariance control 

system is unable to maintain the desired covariance, resulting in a much larger actual covariance level. This in turn 

leads to a much higher rate of track loss. Use of the loss of information term restores this performance, allowing the 

control system to generally achieve the desired covariance goal and reducing the overall rate of track loss. 

A comprehensive approach to the selection of efficient covariance goals remains an open question. In the absence 
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of externally set covariance goals, the desired covariance should be small in directions that are directly measured to 

avoid a high rate of track loss. In directions that are not measured by the sensors, the desired covariance should be 

large to avoid wasting sensing resources. 
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Abstract 

The increased use of multisensor surveillance systems has provided superior tracking performance at the cost 
of increased computational demand. To mitigate this demand, sensor managers, which generate and prioritize 
the actions of those sensors, have been developed that extremize a function of target covariance, priority, and 
-threat level. However, it is difficult to impose a target-specific covariance goal. This paper presents a method of 
controlling the individual covariance of each target estimate. 

1    Introduction 

The application of multisensor fusion to surveillance systems has provided superior tracking performance at the cost 
of increased computational demand. As the number of targets and sensors increases, tracking systems can very 
quickly become overloaded by the incoming data. Furthermore, as the number of available sensors and sensor modes 
increases, it is easy to overwhelm human operators, such as fighter pilots, as well. What is needed is an automated 
method of balancing tracking performance with system resources. Such a system is known as a sensor manager. 

Sensor managers are a general class of systems that generate sensing actions, then prioritize and schedule those 
actions [5]. Sensing actions can include the tasking of sensors to illuminate a target, the selection of sensor modes, 
or scanning an area for unknown targets. These actions will be selected to achieve various goals such as maintaining 
a target track, optimizing the chance of detecting new targets, identifying detected targets, and minimizing electro- 
magnetic emissions to reduce the chance of detection by the enemy. Because of finite sensing and computational 
capacity as well as strict time constraints, the sensing tasks must be scheduled. The priority of a sensor action 
depends on the threat level of an individual target, as well as other less well-defined situational awareness issues. 

Sensor manager systems can be roughly divided between two categories, descriptive and normative. Descriptive 
systems are advantageous when objective information is absent. Approaches in this category include fuzzy reason- 
ing, evidential reasoning, and expert systems [7]. Normative systems use objective performance metrics to guide 
sensing behavior. These metrics, in turn, provide a ready-made method of comparing the performance of competing 
approaches. Such approaches typically use utility, decision, or information theoretic metrics [5, 7]. 

While some authors (e.g. [7]) recommend a unified approach to the sensor management problem, the disparate 
tasks of the sensor manager (target tracking, target detection, target identification, etc.) demand individual study 
before they can be managed as a group. This paper will focus entirely on sensor management as applied to target 
tracking. As such, the tracking task provides objective information that can be easily used in a normative system: 
the target estimate covariance. 

To date, most sensor management techniques have treated this as an optimization problem, where the goal is to 
apply combinations of sensors to each target to minimize a cost function generated using target priority, threat level, 
and the covariance of each target state estimate [6]. A variation of this is to maximize a cost functional based on the 



increase in state information from each sensor combination [8]. In [3], a sequence of navigational measurements for 
U.S. Navy ballistic missile submarines are scheduled using a cost function based on the covariance of the submarines' 
current position estimate and the risk of enemy exposure involved in making those measurements. Additionally, 
neural nets have been applied to the sensor management tracking problem with mixed results [5]. 

A drawback of these approaches is that it is difficult to impose a target-specific covariance goal, such as reducing 
the covariance of a target estimate to accurately fire a weapon. While coarse control of the covariance can be 
achieved by adjusting the priority of a target, it is not clear what priority level will achieve the desired covariance. 
Underestimating the required priority will result in failure to achieve the covariance goal, while overestimating the 
required priority will have a deleterious effect on the covariance of other targets. Attempting to achieve covariance 
goals by manipulating the priority of multiple targets at the same time only intensifies the problem. A more effective 
method would be to attempt to minimize a cost functional based on the difference between the desired covariance 
and actual covariance values. The methods described in [6] and [8] rely on the positive definiteness of the covariance 
matrices, an assumption that would be routinely violated when using the covariance difference metric. Both methods 
use the determinant of the covariance in their metrics. While the absolute value of the determinant would eliminate 
some of the problems, an eigenvalue at zero (meaning that the covariance goal has been met in some direction) 
would result in a determinant equal to zero, which could mask a large error in another direction. Thus a new sensor 
allocation algorithm is needed to maintain specific covariance goals. 

This paper explores the use of different metrics for the evaluation of the error between the desired and actual 
covariance in addition to proposing a new architecture for the sensor manager system. The system we are proposing 
separates the system into a covariance controller and a sensor scheduler. The covariance controller can assign sensor 
combinations to each target to meet a desired covariance level. The scheduler prioritizes sensing actions and executes 
them as time allows. Low priority actions may be delayed until future scans or may be dropped altogether. 

In this paper, the sensor scheduler is relegated to a "black box" without specifying its operations. This convention 
allows the use of various scheduling practices such as those presented in [7] or [10]. As mentioned above, one of the 
expected effects of the separate sensor scheduler is the delay of the execution of sensing requests. This arises due 
to scheduling delays and the limited computational resources of the tracking system. Because of this, not all sensor 
requests can be executed in a single sampling period, causing sensor requests to accumulate in the command queue. 
This results in future requests being delayed as well. 

This article is arranged as follows. Section 2 details our approach to the sensor management problems. It includes 
a review of the equations of the Kaiman filter and the motivation behind our sensor selection algorithms. The system 
architecture and the actual sensor selection algorithms follow in Sections 3 and 4. Selected simulation results for 
these algorithms are presented in Section 5. The effects of sensor request delay are presented in Sections 6 and 7. 
Sections 8 and 9 quantify the effects of sensor request delay for the scalar Kaiman filters in the continuous and 
discrete time domains, respectively. Finally, Section 10 summarizes our conclusions based on this work. 

2    Preliminaries 

2.1    Kaiman Filter 
The sequential Kaiman filter is an algorithm for combining multiple inputs from stochastic or slightly non-linear 
systems to form an estimate in a state space representation. The Kaiman filter is based on the following assumptions 
about the target and measurement systems [1, 2]: 

x(k)    =   Fx(k - 1) + Gu(k - 1) + w(k - 1) (1) 

Zj{k)    =   HjX{k)+Vj(k),     j = l,...,Ns (2) 



where x(k) is the current state of the target; F, G, Hj are known system matrices; u(k) is the control signal; Zj(k) 
is a measurement of the target from sensor j; and there are Ns sensors. w(k) is a variable representing process noise 
or higher-order motion not modeled by F, and Vj(k) is a variable representing measurement noise in sensor j. Both 
w(k) and Vj(k) are assumed to have zero-mean, white, Gaussian probability distributions. 

Since w(k) and Vj(k) are zero-mean noise processes, the target states and measurements in the next time interval 
can be predicted by 

x(k\k-l)   -   Fx(k - 1 | k - 1) + Gu{k - 1) (3) 

Zj(k)   =   Hjx(k\k-1) (4) 

The input u(k) is considered known and will be omitted in future equations because it can be easily reinserted. The 
quantity Vj(k) = Zj(k) - Zj(k) is known as the innovation. The prediction covariance of the state and innovation can 
be found by 

P(k | k - 1)    =   FP(k - 1 | k - 1)F' + Q(k - 1) (5) 

Sj{k)    =   HjP{k\k-\)H'j + Rj{k) (6) 

respectively, where Q{k) is the process noise covariance and Rj(k) is the measurement noise covariance. 
With Ns sensors, there are 2N' possible combinations or subsets of those sensors that can be used by the covariance 

controller. The ith possible subset is defined as $i where NSi is the number of sensors in that combination. For a 
given i, the sequential algorithm runs a separate Kaiman filter for each sensor, propagating its estimate to the next 
filter [9]: 

xi(k\k)   =   x(k\k-l) + Ki(k)(zi(k)-Hix(k\k-l)) 

Xj(k | k)    =   £j_i(£ | k) + Kj(k)(zj(k) - HjXj-i{k | A;)),      je$i 

x(k\k)    =   xNai(k\k) (7) 

where 

ffi(Jfc)    =   P(A|Jb-l)fri5f1(fc) 

Kj{k)    =   Pj-iiklQH'jS^ik),     je®, (8) 

The state covariance is updated for each filter by 

Pi(*|Jfc)    =   {I - K!{k)Hi)P{k \ k - 1) 

Pj{k\k)   =    (I-KjWH^Pj-iiklk),     je$i 

P(k\k)   =   PNm((
k\k) (Q) 

Once the state and covariance estimates have been updated, they are fed back into the algorithm and the entire 
process is repeated for the new set of measurements at the next time step. Alternatively, the covariance update can 
be calculated in a single step using the inverses of the covariance matrices [2]: 



p-^klk)   =   p-1(k\k-l) + YiB'JRJ1Hi (10) 

Since the sum Yljt*i H'jKjlHi 1S usec* frequently, we shall define it as the sensor information gain: 

Ji   =    ^H'JRJ'HJ,     i = l,...,2N> (11) 

where J* is the sensor information gain for the ith combination of sensors. 

2.2    Sensor Selection 

The sensor selection can be determined based on the difference between the inverses of the predicted covariance 
in eq. (5) and the desired covariance Pd(k). Replacing the updated covariance matrix in eq. (10) with the desired 
covariance and solving for the necessary sensor information gain, we see that we want Ji to equal AP, where 

AP   =   Pä\k)-P-l{k\k-l) (12) 

To achieve the desired covariance, the sensor information gain will ideally equal the difference between the inverses 
of the actual and desired covariance matrices. Generally, none of the sensor information gains will exactly equal this 
difference; thus Ji — AP will typically not be zero for any i. An algorithm is needed to select a set of sensors that 
will make «7, — AP as "small" as possible, allowing the desired covariance to be reasonably well approximated. 

While Ji will always be positive definite, the same can not be said for AP. However, generally the desired 
covariance will be smaller than the predicted covariance (requiring the use of sensors) so for the purpose of this 
discussion we will assume that AP is at least positive semi-definite. 

With the above assumption, both Ji and AP can be represented as ellipsoids where the square-root of the 
eigenvalues are the half lengths of the major and various minor axes and the eigenvectors indicate the direction of 
those axes. The two ellipsoids shown in Figure la are the same size, but Jt really does not meet the requirements 
of AP. Ideally, the ellipsoid formed by Ji should completely enclose the ellipsoid formed by AP (Figure lb) which 
ensures that the actual covariance, P, is within the desired covariance, Pd- However, if AP is much smaller than Ji, 
then too much of the sensor resources are probably being applied to that target. 

One method is to compare the largest eigenvalue of AP with the smallest eigenvalue of J,. Obviously, this 
eliminates many candidate sensor combinations that might otherwise work (including the example in Figure lb). 
This technique is far too restrictive, forcing too many sensor resources to be applied to that target. 

Another method is to multiply each unit eigenvector, VAP, of AP by the square root of its eigenvalue, X^p, 
forming f^g, an axis vector of the ellipsoid. Then project each axis vector onto each eigenvector of J^. 

"axis    =    V^APVAP (13) 

V^T   >    i>axia-v* (14) 

where Xj, and AAP are the eigenvalues of Ji and AP, respectively, and i/j. and v^p are the eigenvectors. 
The algorithm will reject those sensor combinations that have any projections that exceed the square roots of the 

eigenvalues of J* (Figure 2a), violating constraint  (14). Of those sensor combinations that are not rejected, the one 
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a) b) 

Figure 1: a) These ellipses are the same size, but represent very different covariance matrices, b) The ellipse formed 
by Ji encloses that formed by AP. 

a) b) 

Figure 2: a) Projecting the eigenvectors of the AP matrix onto the those of J{ indicates if that ellipse exceeds the 
other, b) The projection method fails in this case. 
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with the fewest sensors will be used. However, this technique does not ensure enclosure of AP by Ji, as shown in 
Figure 2b. 

A method that guarantees enclosure and is not overly restrictive is to represent the two ellipsoids in polar 
coordinates. Select a set of angles (closely spaced to avoid missing the ends of long, thin ellipsoids). Then compare 
the magnitude of the ellipsoid formed by AP with that formed by Ji at each angle. If it is bigger, then sensor 
combination i is rejected. Of course, the number of angles required increases exponentially with the dimension of 
the covariance matrices, making this one of the most computationally demanding of the comparison methods. 

A less demanding approach that also ensures enclosure of AP is to examine the difference Jt - AP. If the 
difference is positive semi-definite, then the ellipsoid formed by AP is enclosed by that of J,. This seems to be the 
best available compromise between reliability and computational demands. This method is therefore the basis of one 
of the actual sensor selection algorithms described later in this paper. 

3    Architecture 

Figure 3 shows the block diagram of the proposed tracking system. The Kaiman filter can be thought of as the 
plant while the sensor scheduler acts as a system delay. Control of the covariance of the system is implemented 
via a sensor selection algorithm. The sensor selection is determined based on the difference between the predicted 
covariance for the next sampling period and the desired covariance. Note that the only input to the controller is the 
difference between the desired and actual target estimate covariances. Alternatively, the desired and actual target 
estimate covariances can be replaced by their inverses, resulting in AP being the input into the controller. Actual 
target tracking and estimation are performed by the Kaiman filter. The controller's job is to regulate the use of 
sensing resources by the Kaiman filter to reduce the computational load on the tracking system. 

Because the controller is separate from the Kaiman filter, it can run at a slower speed than the Kaiman filter, 
allowing several iterations of the tracking algorithm to be performed before a new sensor combination is considered 
by the controller. This can be done by predicting the covariance at the next controller sampling period using the 
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architecture shown in Figure 4. In such a system, one sampling period of the controller will correspond to multiple 
sampling periods of the Kaiman filter. 

4    Sensor Selection Algorithms 
The first sensor selection algorithm requires that the sensors used produce an updated covariance that is within the 
desired covariance at all times. This will result in the difference, Pd - Pi, where Pi is the updated covariance using 
sensor combination i, having all positive eigenvalues (as well as the difference «7, - AP). While adding sensors will 
eventually achieve this goal, the computational demand will increase linearly with the number of sensors. Since the 
goal is also to reduce the computational load on the tracking system, the sensor combination with the fewest number 
of sensors that produces all positive eigenvalues in the covariance error should be used at each scan. We shall call 
this the Eigenvalue/Minimum Sensors Algorithm. 

To reduce the on-line computational load on the system, the algorithm can be divided into on-line and off-line 
components. The off-line component precalculates Ji for each sensor combination. The use of the precalculated 
information gains and eq. (10) instead of eq. (9) reduces the on-line computational demand by eliminating the 
calculation of matrix inverses during the Kaiman gain calculation for each sensor (see eq. (8)). Instead, only the 
inverse of the predicted covariance must be computed each scan. The on-line component calculates Ji — AP for 
each i and selects those which are positive definite. This ensures that the updated covariance matrix will be within 
the desired covariance limits. Of those combinations that meet this criteria, the one with the fewest number of 
sensors is selected. This criteria could easily be extended to a cost functional approach when using sensors that have 
varying computational demands associated with their use. Similarly, the sensors could also be weighted by their 
electromagnetic output or by the risk involved with their use (e.g. as proposed in [3]). Use of these metrics would 
allow the maintaining of desired covariance goals while minimizing the exposure to enemy forces. 

Another method of rationing sensor resources is to view positive eigenvalues in the covariance error as excess 
resources applied to a target and negative eigenvalues as too little resources applied to that target. As such, the goal 



of the sensor selection algorithm should be to minimize the norm of the covariance error, Pj - P(k\k). This is the 
Matrix Norm Algorithm. This technique does not guarantee that the resulting covariance will be within the desired 
covariance limits since the algorithm does not take the sign of the eigenvalues into account. One major drawback to 
this approach is that the norm of the inverse covariance error used in the Eigenvalue/Minimum Sensors Algorithm, 
Ji - AP, can not be used in the place of Pd - P(k\k) (since P-1^) - Pd

_1 ^ (P(k\k) - Pd)'1), precluding the use 
of eq. (10) and the precalculated library of Jj's to reduce the computational complexity of the algorithm. 

A third technique, the Norm/Sensors algorithm, relaxes the requirements of the Matrix Norm technique, allowing 
the norm of the covariance difference to vary within a predefined boundary ±0, selecting the sensor combination that 
uses the fewest sensors while keeping the covariance within that boundary. 

5    Simulation Results 

The following figures are the results of computer simulations of the three covariance control algorithms for multi- 
sensor tracking systems. A "dumb" system that simply always uses all its sensor resources is also included for a 
performance comparison. Of the simulations that have been performed, we have chosen to present a few cases which 
best showcase the distinctions between the various systems. Each system uses three sensors that measure the position 
states x and y with different noise covariance values in the x and y directions. Sensor 1 has a measurement noise 
covariance of 1 and 0.05 in the x and y directions, respectively. Sensor 2 has a noise covariance of 0.05 and 1. Sensor 3 
has a noise covariance of 0.22 in both directions (all sensor noise covariance matrices are diagonal). Hence, Sensor 1 
is very accurate in the y direction, Sensor 2 is very accurate in the x direction, and Sensor 3 is moderately "accurate 
in both directions. However, overall, the sensors are approximately equally accurate in that the determinants of the 
noise matrices for the sensors are about equal. 

A single object nominally moving in the positive y direction of an x -y space is tracked using a sequential Kaiman 
filter. The target state consists of [x, x, y, y]T. Its motion is corrupted by a zero-mean, white, Gaussian noise with 
a covariance of 0.127 (7 = identity matrix). A desired estimate covariance, Pd, is defined and follows a step pattern, 
starting as a diagonal matrix with eigenvalues [0.2,0.3,0.2,0.3] at scan 0 and decreasing to a matrix with eigenvalues 
[0.05,0.25,0.13,0.22] at scan 25. The boundary size S for the Norm/Sensors algorithm is 0.2. 

Figure 5 shows the covariance error using the two metrics described in the proposed algorithms: the smallest 
eigenvalue of the difference between the desired and actual covariances, and the 2-norm of that difference. Figure 6 
shows the number of sensors used per scan - corresponding to the computational work load imposed on each tracking 
system. 

Compare the performance of the "dumb" system to that of the Eigenvalue/Minimum Sensors algorithm. While 
both systems always meet the desired covariance goal, note that in the first half of the tracking task, the Eigen- 
value/Minimum Sensors algorithm uses fewer sensors than the "dumb" system, yet suffers very little loss in covariance 
error performance. In the second half of the tracking task, both systems use all of the sensor resources to meet the 
desired covariance. While the "dumb" system wastes sensor resources by using all sensors for each scan, the sen- 
sor selection algorithm is able to balance tracking performance goals with system demands, allocating maximum 
resources only when necessary. 

In the first half of the tracking task, the two norm-based algorithms choose the same sensors while in the second 
half, each algorithm chooses a different sensor combination. In each case, the Norm/Sensors algorithm uses the 
fewest sensors, while the Eigenvalue/Minimum Sensors algorithm requires the most of all of the sensor selection 
algorithms. However, except for the "dumb" system, the Eigenvalue/Minimum Sensors algorithm provides the best 
tracking performance, always selecting sensors so that the covariance is within the desired covariance, hence leading 
to the smallest RMS errors between the state estimate and the truth. The Norm/Sensors algorithm typically allows 
the largest covariance. The Matrix Norm algorithm's performance generally falls between the other two techniques. 
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Figure 5: Comparison of the Covariance Tracking Accuracy of Sensor Selection Systems with no Delay 

These algorithms represent a continuum of tradeoffs of computational demand versus tracking accuracy. Of 
the sensor selection algorithms, the Eigenvalue/Minimum Sensors algorithm will, in general, use the most sensor 
resources, since it has the strictest covariance requirement (the covariance must be less than the desired covariance 
in all directions). The Matrix Norm may choose fewer sensors, since it does not require the covariance to be within 
the desired covariance. Finally, the Norm/Sensors algorithm should choose the fewest sensors, but generally allows 
the largest covariance. 

6    The Effect of Sensor Request Delay 

Similar to the effects of delay on dynamic control systems, the tracking performance of the sensor selection algorithms 
when there is delay becomes less stable. The problems that delay causes are due to the fact that the covariance 
controller makes sensor selections based on the current covariance. For example, Figure 7, shows the evolution of the 
covariance of a scalar system with time using a single sensor selection. Assume that the controller decides on a sensor 
selection and executes it at time zero. Then 0.2 seconds later, if the desired covariance Pj changes, the controller 
selects a different set of sensors based on the difference between Pj and the variance at that time. If the execution 
of this change is delayed for 0.2 seconds, then since the covariance difference Pd — Pk\k-i at £ = 0.4 is different from 
the covariance difference at t = 0.2, either excessive or insufficient sensor resources have probably been assigned to 
this tracking task. 
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Sensor request delay should not be confused with measurement delay, where the measurements do not represent 
the present state of the target. In this case further processing of the measurements is needed to account for this. 
In sensor request delay, the tasking of the sensor lags behind the requests. Once the measurements are made, they 
represent the current state of the target. 

The effects of delay can be ameliorated by predicting the covariance estimate after the delay, allowing the sensor 
selection algorithm to make its decision based on what the predicted covariance will actually be when the delayed 
sensor selection is executed. To implement this prediction scheme, we simply iterate the covariance prediction and 
update equations of the Kaiman filter for the projected length of the delay, using the assumed sensor selections for 
that time period (using the architecture in Figure 4). Correctly assuming the delay and sensor selections will restore 
most of the performance reduction caused by the delay. 

7 Simulation Results for the Effect of Delay 

The effect of delay on the system is also simulated, using the Eigenvalue/Minimum Sensors Algorithm. The algorithms 
and systems simulated are defined as follows: 

• Dumb System - a "dumb" system that uses all three sensors throughout the tracking task and has no delay; 

• No Delay - a "smart" system running the EV/Minimum Sensors Algorithm; 

• 5 Scan Delay - a system running the EV/Minimum Sensors Algorithm, but whose choices are delayed by five 
scans; 

• 5 Scan Delay w/ Prediction - a system with its sensor choices delayed by 5 scans, but that compensates by 
predicting the correct covariance at the end of that delay. 

In all the systems, no sensors are selected initially, and the systems with delay will not make any target measurements 
for the first 5 scans. 

Figures 8 and 9 show a plot of the smallest eigenvalue of the difference between the desired and actual covariances 
(the various curves have been shifted slightly both vertically and horizontally to improve the readability of the figures). 
The plot shows the poor performance observed when a delay is added to the sensor selection system and not accounted 
for in the algorithm - the actual covariance both over- and under- shoots the desired covariance. Notice that the 
predictive system recovers quickly from the delay-induced errors. Once again, since the "dumb" system uses all three 
sensors each scan, its covariance is always contained within the desired covariance ellipsoid. 

Figure 10 shows the number of sensors used in each scan - again corresponding to the computational work 
load imposed on each tracking system. The "dumb" system uses the most system resources since it uses all of the 
sensors throughout the tracking task. The "smart" system without delay and the predictive system use the fewest - 
increasing the number of sensors only briefly when the desired covariance is reduced. The delayed system without 
the predictive compensation uses less resources than the "dumb" system, but more than the undelayed or predictive 
systems. While uncompensated delays can severely degrade system performance, predictive compensation of those 
delays can restore most of that performance. 

8 Analysis of Delay in the Continuous Kaiman Filter 

Since it is not always possible to accurately model the delay, a more detailed analysis of the effect of delay is needed. 
In general, there is no closed form solution for the estimate covariance trajectory. The scalar continuous version of 
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Figure 10: The Effect of Delay on the Efficiency of Minimum Sensor Systems 

the Kaiman filter (Kalman-Bucy), however, does have a closed form solution. In this section, we provide an analysis 
based on this closed form solution; and in the next section, we will extend those results to the discrete-time Kaiman 
filter. 

We begin with the scalar version of the Kalman-Bucy filter: 

x(t)    =    -ax(t) + w(t) 

z(t)    =   x(t) + v(t) 

(15) 

(16) 

where x is the target state variable to be tracked and z is a measurement of that state. Note that when a > 0, 
the nominal system is stable. The state evolves according to a stochastic linear differential equation corrupted by 
white, zero mean noise w(t) with variance q. The measurement is also corrupted by white, zero mean noise v(t) with 
variance r. The state estimate is then 

£{t)    =    -ax(t) + ^-[z(t) - x(t)] 
r 

where p(t) is the state estimate variance (equivalent to covariance in the scalar case) such that [2] 

(17) 

p(t)    =   Pl + P1+P2 
Ce2at - 1 

a -i r 

(18) 

(19) 
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Po =   P(0) 
Pi =   r(a - a) 

P2 =    r(a + a) 

c P0+P2 
P0-P1 

Notice that as t goes to infinity, the second term in eq. (18) goes to zero. Thus pi is the steady-state value of the 
state estimate variance. We now define the error in the estimate of the updated state variance due to a delay in 
sensor request execution as 

Ap(t,d)    =   p(t)-p(t + d) (20) 

2raCe2at(e2ad-l) 

{Ce2at - l)(Ce2*('+d) - 1) 

2raCe2at(e2ad - 1) 
C2e4ate2ad _ (;e2ai(e2ad + 1) + 1 

where t, d > 0. This is a valid assumption since the equation only describes the variance after t = 0 and a sensing 
request can never be executed before it is requested. Divide the numerator and denominator by eiat to get 

A  (+ d)    =      ~2at 2raC(e2ad - 1)  
P[ '  )    ~   6       C2e2ad - Ce-2at(e2ad +1) + e~iat ^21) 

It is now easy to see that as t increases, Ap(t, d) goes to zero. If the convergence is monotonic, then the sensitivity 
of the variance estimate to a sensor request delay will always decrease with time. If this is the case, then a lower 
controller scan rate (compared to the Kaiman filter scan rate) will result in a more robust performance of the sensor 
selection algorithms. 

If the convergence to zero is monotonic, the sign of the derivative should not change (if Ap(t, d) is negative, it is 
always increasing to zero; if it is positive, it is always decreasing to zero). 

d A   u j\ „    -2at 2raC{e2ad - 1) -Ap(t,d)    =    -2ae       ^^ _ ^^ +^ + ^ (22) 

_ _2at2raC(e2ad - l)[2aCe-2at(e2ad + 1) - 4ae~4at] 
(C2e2ad - Ce-2at(e2ad + 1) + e~4at)2 

-4ra2e-2at(e2ad - l)(C3e2ad - Ce~4at) 

~      (c2e2ad-Ce-2at{e2ad + l) + e-Aat)2 

Since e2ad is always greater than 1 and the denominator is squared, only the factor C3e2ad - Ce~4at will affect the 
sign of the derivative. The assumption that t,d > 0 leads to \C\ > 1 as a sufficient but not necessary condition for 
the monotonicity of Ap(t,d). This behavior can be seen in Figure 11. A more precise requirement for monotonicity 
:- C2e2ad > 1 since e~4at is never larger than 1. is 
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Figure 11: Examples of the qualitative performance of variance evolution with time for various C. For the case where 
C > 1, po > pi and for both cases where C < 0, po < Pi- 

8.1    Analysis of C 
The next question becomes: When is \C\ < 1? 

C    = P0+P2 

Po -Pi 
Po+ra+ra 
Po — ra + ra 

(23) 

Observe from eq. (19) that a > \a\. Then, regardless of the sign of a, the numerator of C is always positive. This in 
turn means that the sign of C is solely related to the relationship between the initial and final variances of the state 
estimate. Thus if po > Pi, then C is positive and if po < Pi, then C is negative. 

For the case of 0 < C < 1, the following must hold 

Po + ra + ra   <   po - ra + ra 
ra    <    —ra 

(24) 

Since ra is always positive, this condition cannot exist. Therefore, p0 > pi =*• C > 0 =$> C > 1. Thus, the variance 
of all scalar systems will converge monotonically when the initial variance is larger than the steady-state variance. 

For the case of -1 < C < 0, the following must hold 

po + ra + ra   <    —(po-ra + ra) (25) 
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Po    <    —ra 

Since po and r axe always positive, this implies that a must be less than zero (x(t) is unstable) for this to occur. 
Therefore, when po < pi, a > 0 =$> C < —1. This, combined with the monotonicity of all systems with C > 0 
indicates that the variance error due to delay of a stable target will always converge to zero monotonically with time. 
When po < pr and a < 0, po > -ra => C < -1. When p0 < -ra holds (meaning (-1 < C < 0), then C2e2ad > 1 is 
required for monotonicity. 

8.2    Prediction of Variance Via Delay Estimation 

Our simulation studies have shown that the effects of delay can be almost completely eliminated by predicting the 
actual variance after the delay. The sensor manager can then select sensor combinations based on p(t + d) rather 
than p(t). We now look at the effect of errors in the estimate of the delay. Define the variance prediction error due 
to an error, S, in the delay estimate as 

Ap(t,d,S)    =   p(t + d)-p(t + d + S) (26) 

=   p(t')-p(t' + 5) 

=   Ap(t',S) 

Thus a redefinition of variables allows us to use the variance error from before. Note, however, that 5 can be positive 
or negative. 

A useful aspect of variance prediction to determine is whether it is better to overestimate or underestimate the 
actual delay. To examine this, assume a delay estimate error of 6. If Ö > 0, the delay has been overestimated; if 
S < 0, the delay has been underestimated. Looking at the variance prediction error, 

A  ul „ 2raCe2at' (e2aS -1) ,    x 
AP(M)    =    (Ce^-l)(Ce2^-l) (27) 

the denominator consists of two factors of the form Ce^ - 1. Since the exponents are always positive, when C > 1, 
each factor is always positive. When C < 0, each factor is always negative. Thus the denominator is always positive 
and does not affect the sign of the variance estimate error. In the numerator, the only factors that can be negative 
are C and (e2aS - 1). Notice that when S < 0, the factor (e2aS - 1) is negative and when S > 0, the factor is positive. 
Of course when 6 = 0, the variance is predicted exactly and the error is zero. Thus, when C > 0, the sign of the 
variance prediction error is the same as that of 5. When C < 0, the sign is opposite that of 6. 

Assume for the moment, that ö > 0. Hence, when C > 0, Ap(t',S) > 0; and when C < 0, Ap(t\6) < 0. Since, 
all other variables being equal, we can expect the variance error due to S, Ap(t',6), to have the opposite sign of 
Ap(t', -6), the sum of the two will have the same sign as the larger of the two errors. That sum becomes 

Ar*'x\^*/*>    x\ 2raCe2at'(e2aS - 1) 2raCe2at'(e~2a6 - 1)       - 
(Ce2at' - \){Ce2a(t'+s) - 1)     (Ce2at' - l)(Ce2a«'-<5) - 1) 

2raCe6at'(2 - e~2aS - e2a5)(C2 - e~4at') 
(Ce2at' - l)(Ce2a(*'+<5) _ i)(Ce2at' - l){Ce2a^'-&) - 1) (28) 
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Again, the denominator consists of four factors that are all positive or all negative depending on C, so the denominator 
is always positive. If we look at the factor (2 — e -2aS e2aS), we find the derivative with respect to S is 

0(2-e -2aS _ e2°tS\ 

86 
2a{e -2a5 _ e2a<5-j (29) 

For 6 > 0 this derivative is always negative except at 6 = 0, which represents the local maximum.  The value of 
(2 - e~2aS - e2aS) at this point is zero. Thus, this factor is always less than or equal to zero. 

The factors left to control the sign of the sum Ap(t',5) + Ap(t', -S) are C and C2 - e~4Qt'. If \C\ > 1 then 
C2 _ e-4at' is aiways positive. If C > 0 (and thus > 1), then Ap(t',S) > 0, Ap(f, -5) < 0 and the sum in eq. (28) 
is negative - indicating that the error due to —S is greater than the error due to 5. When C < —e~2at < 0 (and 
thus Ap{t',5) < 0 and Ap(t',-S) > 0), the sum in eq. (28) is positive, indicating that once again, the error due 
to -S is greater. Since t' = t + d, the relation C < -e~2ad is a sufficient condition to ensure the superiority of 
overestimating the delay. Figure 12 shows the effect of different values of C on Ap(t',5) + Ap(t', -5). In this case, 
when C = —0.1, the variance prediction error is actually slightly larger when the delay is overestimated than when it 
is underestimated, but as \C\ increases, it becomes much more advantageous to overestimate the delay. Notice that 
when C = -10, the prediction error is very near zero regardless of how much the delay is overestimated. 
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9    Extension to Discrete Kaiman Filter 

Since most tracking systems are discrete time systems, it is desirable to extend these results to the scalar discrete 
Kaiman filter (repeated below with scalar notation for clarity). 

Xk+i    =   fxk + wk (30) 

zk    =    hxk + Vk (31) 

The state estimate becomes 

£k+i\k    =   fxk\k (32) 

£*+i|*+i    =   xk+i\k + Kk+i(zk+i -hxk+1\k) 

The notation xk+i\k means "the estimate of x at time k + 1 given measurements through time fc".  The system 
variance is calculated as follows: 

Pk+i\k   =  f2Pk\k + q (33) 

Sk+i    =   h pk+i\k + r 

K _    Pk+i\kh 

Sfc+l 

Pk+i\k+x    =    (1 - Kk+\h)pk+i\k 

where q and r are again the target and measurement noise variances, respectively. The prediction variance, pk+uk 

(abbreviated as pk+i below to keep the equations readable), can be described using the following Riccati equation: 

Apk + qr 
h2pk + r 

A   =   f2r + h2q (35) 

Pk+i    =    TO—T— (34) h2pk +r v    ' 

Defining a function uk such that [4] 

_    uk+i - ruk 
Pk    ~ Vuk      ' (36^ 

with initial conditions u0 = 1 and ui = h2p0 + r,uk = 0fovk< 0, and substituting it into eq. (34), yields 

Uk+2 - ruk+1     _    Auk+i + (h2qr - Ar)uk 
(37) h2uk+i h2uk+i 

uk+2    =    (A + r)uk+i + (h2qr - Ar)uk + 6k+2 + (h2p0 - A)Sk+1 (38) 

where the delta functions have been added to satisfy the initial conditions u0 and m.   The Z-transform of this 
equation is 
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U(z)   = z(z + h2
Po-A) 

z2 - (A + r)z - (h2qr - Ar) 

1-Xiz 
Rl       + 7-^-ZT (39) -l 

where 

A + r + y/(A + r)2 + A(h2qr - Ar) 
^1 

= 
f2r + h2q + r-± 

2 
■ y/{f2r + h2q + r)2 - - Apr2 

A + r 
2 

A2 

- y/{A + r)2 + 4{h2qr - Ar) 

pr + h2q + r - 
2 
y/(f2r + h2q + r)2 ■ - Af2r2 

(40) 

(41) 

Ri    =    X1+h2
Po-A (42) 

Al — Ä2 

R2    =    _^ + h2p0-A ■       (43) 

Ai - A2 

Taking the inverse Z-Transform gives Uk = -RiAf + ^A*. Substituting this result back into eq. (36), 

ÄiAftAi-rJ + flaA^Aa-r) 
Pfc    = /i2(fliAf + R2X%) 

i Ai > Äi(Ai-r)(^)*+Ä2(A3-r) 
(44) 

h2(jRl(ii)t + Ä2) 

Let us take a closer look at Ai, A2, Ri, and R2. Since we expect the variance to be real, both Ai and A2 should 
be real. For this to be true, the expression under the radical should be positive in eqs. (40) and (41). 

(/2r + A2g + r)2_4/2J.2    =    (pr
2 -2f

2r2 +2ph2qr + r2 -2h2qr + hAq2) + 4h2qr 

=    (f2r-r + h2q)2+Ah2qr (45) 

Since the last equation is obviously positive, both Ai and A2 are real. Furthermore, since pr + h2q + r > 0 and 
pr2 > 0, then (pr + h2q + r)2 > (pr + h2q + r)2 - Apr2, thus Ax and A2 are both positive as well, with Ai > A2. 

To see when Ri is positive, 

Ax    =    Xl+h2*-A>0 (46) 
Ai — A2 

h2p0    >    -Xi+A (47) 

pr-r + h2q - y/(pr -r + h2q)2 + Ah2qr 
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Since the right-hand term is obviously negative, i?i is always greater than zero. Evaluating R2 yields 

A2 + h2po - A 
R2    =    - 

Ai-A; 2 

h2 r-A-y/(,pr+h2q+r)*-4f^ 

Al — A2 

"   "^^ (49> 

where p/ = ^^ is the final variance (as shown below). It is easy to see that R? > 0 when pf > po (the variance of 
the target estimate is increasing) and i?2 < 0 when po > Pf (target estimate variance is decreasing). Another useful 
relationship is 

p ^p (Ai + h2p0 -A)- (Aa + h2
Po - A) 

Hl + Ü2     =  
Ai - Ä2 

_      Ai — A2 
Al — A2 

=    1 .       (50) 

Using this, along with the fact that R\ is always positive, it is easy to show that R\C + R2 > 1 > 0 for all c> 1. 
Since Ai > A2 > 0, note that as k -> 00 in eq. (44), pk -»■ ^r1 = Pf. It is then possible to substitute p/ into 

eq. (44) to get 

—   „ -R2(Ai - A2) . 
Pk    ~   Vi'- h2{Rla* + R2) 

(51) 

where 

A2 

Now again define the variance error due to a delay d as 

Ap(k, d)    =   pk- pk+d 

-^(Ai-A2)a*(ad-1) 

(Äia* + R2)(Riak+d + R2) 
(    ' 

It is easy to see that this error goes to zero as k ->■ 00. Furthermore, setting d = 1 provides the slope of the 
variance, which shows that the variance is monotonic with time (as is expected). The slope of the variance error of 
the discrete system can be defined as Ap(k, d) - Ap(k + 1, d). 

Ap(kd)-AP(k + ld)    - -^{Xl ~X2)Qk{ad ~ 1)(Q ~ Wflfc"-"*1 - *J) M AP(k,d)    AP{k + ljd)    -    {Riak + mRiQk+d + R2){Riak+x + R2){Riak+ä+i + R2) (54) 
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Notice that each of the factors in the denominator will always be positive, and all of the factors in the numerator, 
except for R2a2k+d+1 - .Rf, do not change sign with k. This leaves two cases to evaluate: 

Case 1, R2 < 0: Recalling that when R2 <0,Ri> \R2\, we see that the variance error due to delay will always 
be monotonic when the target estimate variance is decreasing. This matches the behavior of the scalar continuous 
time Kaiman filter variance. 

Case 2, R2 > 0: Since R\a2k+d+1 -R\> R\-R\, the constraint R{ - R\ > 0 is a sufficient condition for the 
positiveness of R\a2k+d+1 - R\. 

R\ — R2   — 
(Af-A|) + 2(Ai-A2)(ft

2po-A) 

(Ai + A2)4 

(Ai - A2 

- 2(h2p0 ■ 
)2 

-A) 

r — 
(Ai 

A + 2h 

-A2) 
2Po 

(Ai - A2) 

-r(f2-l) + h2(2p0-g) 

(Ai - A2) 
(55) 

This establishes the following sufficient conditions on the monotonicity of the convergence of the variance error 

when po < Pf- 

l/l    <    1 (56) 

Po    >    f (57) 

or more precisely, 

Po    ~     2^  (58) 

Looking again at whether it is better to overestimate or underestimate the delay when it is not known, define 
k' = k + d and let S > 0 be the error in the delay estimate. Then 

,      N -^(Ai-A2)a*' /      as-l a~s-l     \ 

-^(M-X2)a
k' (   {R,ak' -R2)(2-as-a-s)   \ (gg) 

i?ia*'+i?2        \(Riak'+s + R2)(R!ak'-s + R2) J 

Recalling eq. (53), the sign of Ap(k,5) is opposite that of R2, and the sign of Ap{k, -8) is the same as R2. Thus it 
is better to overestimate the delay when the sign of eq. (59) is the same as R2 (meaning the magnitude of Ap(fc, -S) 
is greater than that of Ap(k,6)). From previous analysis, the term (2 - as - a~s) is always negative, leaving only 
(ilia*' - R2) to affect the sign of the sum over time. Since ak> > 1, if Ri - R2 > 0, then the sign of eq. (59) is the 
same as R2, and thus it is better to overestimate, rather than underestimate, the length qfthe sensor request delay. 
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r,      u Ai + A2 + 2h2
Po - 2A 

Ki — Ü2    —     r :  
Ai — Ä2 

- r~A + 2ft2Po 

- r(l-^) + ^(2po-g) 
- Ai-A2       (6°> 

This leads to the same conditions required for montonicity in eqs. (56)-(58). 

10    Conclusions 

Several sensor selection algorithms have been proposed for maintaining a target's state estimate covariance near 
a desired level without over-taxing the computational resources of a tracking system. The proposed algorithms 
maintain a specific desired covariance for each target while reducing the resource demands of current unmanaged or 
"dumb" systems. Simulation results indicate that the three sensor selection algorithms presented in this paper clearly 
outperform "dumb" systems in terms of resource efficiency. Other sensor manager functions including prioritizing 
and scheduling are assumed to be performed separately and will impact the covariance control algorithms in the form 
of request execution delays. 

As in dynamic systems, delay dramatically reduces the performance of the control algorithm, but if it can be 
accurately modeled, most of the performance can be restored. However, the effect of unmodeled delay decreases 
with time (as the covariance of the system converges to a steady-state value). Furthermore, when the actual delay 
is unknown or varies over time, overestimating the delay will generally produce smaller covariance prediction errors 
than underestimating the delay. Underestimating the delay is better in continuous-time tracking systems only when 
increasing the estimate covariance of a target with an unstable dynamic model. In discrete-time systems, a similar 
trend is found in that overestimating the delay usually leads to smaller covariance prediction errors. 

Based on these observations, strategies to reduce the effects of delay on covariance estimates could include 
reducing the scan rate of the controller, i.e. allowing the Kaiman filter to run longer in between changing the sensor 
combination. However, this strategy is limited by the desired responsiveness of the system. If the scan rate of the 
controller is reduced, the time required to change the target covariance increases. Another strategy is to consistently 
overestimate the delay when attempting to predict the covariance. The drawback to this method is that it increases 
the computational demand on the controller. 
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Chapter 1 

INTRODUCTION 

1.1 Sensor Management 

Sensor management is concerned with improving or optimizing the measure- 

ment process in a tracking system [17]. Different sensors may have different controlla- 

ble parameters. When a sensor parameter may be changed in real time it is called an 

agile sensing resource. Sensors can be classified as active or passive, serial or parallel, 

and broadband or narrowband. Similar to multi-user communications systems, multi- 

target tracking systems use concepts of multiple access such as Time Division Multi- 

ple Access (TDMA), Frequency Division Multiple Access (FDMA), and Code Divi- 

sion Multiple Access (CDMA) to efficiently allocate sensing, communication, and 

computational resources. 

When managing a monopulse ESA radar some parameters we may be con- 

cerned with are radar beam shape, electromagnetic emissions, average energy, average 

power, modulated waveform, modulating waveform, carrier frequency, pulse period, 

and sample period [6]. Although not all radars can change these parameters in real 

time, at some point in the design process these parameters must be chosen. Other non- 

controllable parameters that affect detection and estimation performance are Radar 

Cross Section (RCS) and channel noise. These parameters together determine the 

detection and estimation performance in a tracking system. 



An infrared CCD array is an example of a passive, narrow band or broadband, 

parallel sensor. Parameters associated with this sensor are its pixel frequency response, 

image resolution, and sample rate. After the CCD array is designed, the frequency 

response and image resolution are generally fixed, while the sample period can be a 

variable parameter depending on the hardware. Quantization effects such as finite 

image resolution and measurement or channel noise affect subsequent estimates. 

Rate and resolution are two fundamental concepts in signal processing. We 

define rate as the inverse of the sensor sample period and resolution as the inverse of a 

positive definite error covariance matrix, the so called Fisher information. Most sensor 

management techniques have considered rate and resolution separately [7,8,11,13,15, 

19,20,21,22]. 

Because the types of sensors are so varied, there are several levels of detail in 

which one can model a sensor. In a similar manner there are also different levels of 

detail in a sensor manager. These will be coarsely divided and labeled micro and mac- 

rosensor management. One description of microsensor and macrosensor management 

is contained in [17]. The microsensor manager handles the details of how the sensor is 

to achieve the sensing task provided by the macrosensor manager [17]. In managed 

data fusion, the sensor manager uses feedback from the signal processing and informa- 

tion processing systems in order to control the sensors' manageable resources. 

Sensing actions are broadly divided between searching for new targets and 

tracking existing targets. Separation of these two actions has been enabled by special 

sensors that allow dynamic allocation of sensing tasks to the sensor time line. The 

classic example that illustrates this is the difference between mechanically scanned 

antenna (MSA) radars and electronically scanned array (ESA) radars. The benefits of 

dynamic time allocation in MSA radars can not be fully achieved because of the time 

constant associated with physically moving the antenna. This has caused searching 

and tracking to be coupled in MSA radar systems [17]. The benefits of dynamic time 



allocation in ESA radars, however, can more folly be made use of because the cost 

associated with switching between sensing tasks is negligible. This has allowed the 

separation of searching and tracking in some ESA radar systems. We therefore begin 

our efforts by focusing on tracking one target with the available sensing resources. 

Several sensor management systems have been proposed for centralized sys- 

tems [13,19] based on the optimization of a cost function generated using target prior- 

ity, the covariance of each target state estimate, and the cost of using specific sensor 

combinations. Two problems associated with using these techniques are that 1) using 

target priority is a coarse adjustment for maintaining tracking performance, and 2) 

they do not consider using sample rate to maintain tracking performance. 

The drawback of the above approaches in addressing tracking performance 

motivated the development of the algorithms presented in this thesis. These methods 

are based upon maintaining desired covariance goals [8,14,15]. Using these desired 

covariance goals we are able to develop algorithms that use both sensor rate and sensor 

resolution to jointly optimize the target error covariance. In this approach, the algo- 

rithms are implemented in a specific architecture that separates the sensor manager 

into a controller, which selects the sensor combinations based on their ability to 

achieve this goal, and a sensor scheduler that prioritizes sensing actions and executes 

them as time allows. Low priority actions may be delayed until future scans or may be 

dropped altogether. The covariance controller maintains the covariance level of each 

target estimate to within some desired level while reducing system resource demands. 

The sensor scheduler is relegated to a "black box" without specifying its oper- 

ations. One of the expected effects of the separate sensor scheduler is the delay of the 

execution of sensing requests. This arises due to scheduling delays and the limited 

computational resources of the tracking system [16]. Because of this, not all sensor 

requests can be executed in a single scan, causing sensor requests to accumulate in the 

command queue. This results in future requests being delayed as well. 



Distributed sensing systems have significant advantages over centralized sens- 

ing systems. Having a distributed network increases survivability. When one node or 

nodes' sensing resources fail, the remaining nodes can reallocate sensing resources so 

that the mission goals are maintained. Depending on the distributed network architec- 

ture, both the communication bandwidth and computational complexity may be 

reduced compared with that of the centralized system where all measurement data 

goes to the central processor. This communication and computational load reduction 

can be achieved by using non-fully connected networks which usually results in worse 

tracking performance. In a fully connected network however, the tracking performance 

is not degraded because each node has full information of targets of interest. Another 

important advantage is increased target detectability and observability. The radar cross 

section (RCS) for one node may be so small that it could cause a missed detection. 

Having many nodes at different look angles can allow for better detectability. Some 

nodes sensors may only provide information about a subset of the state vector. Having 

different nodes' sensors observing the same target can allow target observability. 

1.2 Problem Statement 

The application of distributed multiprocessor, multisensor fusion to surveil- 

lance systems has provided superior tracking performance at the cost of increased 

communication and computational demand. As the number of platforms, targets, and 

sensors increase, tracking systems can very quickly become overloaded by the incom- 

ing data. Sensor management systems that can balance tracking performance with sys- 

tem resources have been proposed to combat this problem. Such systems generate 

sensing actions, then prioritize and schedule those actions [11]. 

1.3 Approach 

Due to the advantages of distributed networks, we wish to develop robust dis- 

tributed sensor management techniques. A block diagram of a decentralized tracking 



system is shown in Figure 1. This model shows the different components of the system 

including sensing and communications facilities along with signal and information 

processors and a sensor manager. 

This block diagram illustrates the sensor control problem, where each nodes' 

sensor manager uses rate and resolution to maintain the state information matrix^ 

P-1 (tn + j \tn) within an elliptical annulus described by a desired update information 

matrix and a desired prediction information matrix given by Yjl(t„) and P^(?„), 

respectively. These desired information matrices are common goals among all nodes. 

This philosophy emphasizes the development of algorithms whereby all nodes work 

together to achieve a common goal. In contrast to the centralized sensor manager, the 

decentralized sensor management problem is further complicated due to the presence 

of feedback of sensor information from other sensing nodes. 
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Figure 1 Components of a decentralized tracking system 

The elliptical annulus can have several interpretations: the first interpretation is 



to treat the desired information goals as upper and lower bounds on the state informa- 

tion matrix and the second interpretation is to treat each desired information matrix as 

lower bounds on the state information matrix. The first interpretation elicits the idea 

that we want to maintain the state information matrix inside the elliptical annulus, i.e. 

Yjl(t„) > P-1('„+1 \t„) > Prfp(^w) • The second interpretation of the desired informa- 

tion matrices is that each is treated as a lower bound, i.e. P_1 (tn + {\tn) > P^' (tn) and 

p-1('n|U > p^«^«) • Th*s work uses ^e second interpretation of the elliptical annu- 

lus so that we have more information than desired. If we use covariance matrices 

rather than information matrices, then the lower bounds become upper bounds on the 

state covariance matrix. 

We present two robust distributed algorithms that maintain the desired covari- 

. ance while using a minimal amount of internodal communication. In addition to 

exploring the distributed problem, we also investigated a number of aspects of the cen- 

tralized sensor management problem in order to clarify which potential approaches to 

pursue for decentralized sensor management algorithms. 

Many issues must be considered when designing a sensor manager. Rate and 

resolution are the primary issues when we are concerned with maintaining a certain 

level of estimation performance. Two other important performance criteria that a sen- 

sor manager might consider are detection performance and electromagnetic (EM) 

power emissions. The detector is contained in the signal processor in the block dia- 

gram from Figure 1. In some scenarios it may be desirable to put limits on the EM 

power emissions such as in covert operations. For all of these issues we must consider 

the communication and computational load not only in the detection and filtering algo- 

rithms but also the additional communication and computation involved with the sen- 

sor management algorithms. 

The block diagram of the sensor manager is shown in Figure 2. The sample 

period, T(tn), is a function of time and can change for each new sample. The resolu- 



tion, r(tn), is a subset of the available sensors at the /th node. The rate and resolution 

computation can be performed at a reduced rate from the sensor sample rate(s). This is 

one method for reducing the computation in the sensor manager. The sensor scheduler 

Sensor 
Commands 

SENSOR 
SCHEDULER 

r('„) 

-1 ffiWÄC) 

ntn) 

RATE& 
RESOLUTION 

COMPUTATION 
r-1 Cjg 

Communications 

Figure 2 Sensor manager block diagram 

takes the rate and resolution information and applies it to the sensor time lines. The 

sensor scheduler can cause problems in maintaining a desired covariance. The sensor 

scheduler can cause both delay and dropout of sensor requests. Delays can happen 

when two sample rates are not commensurate. When tracking one target, as considered 

in this thesis, the sensor scheduler will have lesser affects than if there are multiple tar- 

gets that must be tracked. 

1.4 Contributions 

Although this work has been directed towards a masters thesis, that does not 

preclude original thought. There are several original contributions contained in this 

thesis. The main contribution of this work is the covariance control technique 

described in Section 3.2, where a desired elliptical annulus is used to allocate sensing 

resources. 
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Using different metrics to control the prediction and update coyariance are also 

contributions. Several new metrics have been developed for choosing sensors that are 

based upon the Singular Value Decomposition (SVD). Rate optimization polynomials 

were also developed that are used for computing the optimal sample period in the Kai- 

man Filter for achieving a specific covariance goal. These contributions apply to cen- 

tralized and decentralized multisensor systems. 

The ordered nodes algorithm and extended ordered nodes algorithm are contri- 

butions to the area of distributed multiprocessor sensor management. These specific 

algorithms apply many of the covariance control techniques developed in this thesis. 

1.5 Overview 

The chapters are organized as follows. Chapter 2 reviews some theoretical 

background material. Using linear system theory, we review discrete tracking models 

from a continuous time linear system. These models are used for developing covari- 

ance control techniques where the sample period is a variable control parameter. 

Chapter 3 addresses sensor manager issues for centralized systems. The Kai- 

man filter equations are reviewed and used in developing covariance control tech- 

niques. The sensor manager controls covariance through adjustment of sensor rates 

and sensor resolutions. These techniques are developed as background material for the 

more difficult problem of allocating sensor resources in decentralized systems. 

Chapter 4 introduces sensor manager techniques for decentralized systems. 

The DKF is used in the development of two distributed sensor manager algorithms. 

The Ordered Nodes algorithm and Extended Ordered Nodes algorithms are detailed 

and simulations are presented to demonstrate the performance of these algorithms. 

Finally, chapter 5 gives some conclusions about covariance control techniques 

used in sensor managers and discusses issues for further investigation. 



Chapter 2 

THEORETICAL BACKGROUND 

2.1 Linear System Theory 

The following development will establish the notation used in the remaining 

sections and chapters. In order to model the stochastic nature of a continuous time ran- 

dom process, an Mh order stochastic differential equation is used with both stochastic 

and deterministic inputs. The matrix coefficients are subscripted to indicate that they 

are the continuous time parameters. The matrix coefficients are assumed known and 

possibly time varying. In an actual application, some of the coefficients may be 

unknown and must be computed a priori and possibly estimated in real time from data 

received from the sensors. 

x(t) = Ac(t)x(t) + Bc(t)wc(t) + Cc(t)u(t) (2.1) 

y(t) = Vc(t)x(t) + Ec(t)vc(t) + ¥c(t)u(t) (2.2) 

The deterministic input u(t), appearing in both (2.1) and (2.2), models control inputs 

and feed through terms, respectively. For example, in an aircraft, satellite, or robot, 

these terms could model forces exerted by thrusters, gyros, or motors. In estimation 

problems, these control inputs are usually removed and, when the inputs are determin- 

istic, do not degrade the quality of the estimates. Proceeding in this fashion and 
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relabeling the matrix coefficients we have the state and measurement equations. 

x(t) = Ac(t)x(t) + Bc(t)wc(t) (2.3) 

y(t) = Cc(t)x(t) + Dc(t)vc(t) (2.4) 
-P Ac(x)dx 

J'o to: Using the matrix integrating factor e J ° to multiply each side of (2.3), we can 

solve the system of differential equations. Assuming the matrices in (2.3) are constant 
-f Ac(T)rfr (t -tlA 

the matrix integrating factor is then e J ° = eK °   ' c. The solution is [12] 

eito-t)Ac(x(t)-Acx(t)) = j(e(t°-t)A<x(t)) = e^-t)A<Bcwc(t) 

j^-(e(to-z)^x(x))dx = Je('°-T)A<Bcwc(T)</T 
dx" 

t 

t 

x(t) = e{t-^^x{t0) + e{t-^)x^e^-z)^Bcwc{x)dx 

t 

x(t) = eu-'<>)A<x(t0) + je^-z)A^Bcwc(x)dx 

With the substitution of variables tn+l = t,tn = t0, and T = tn+l-tn,we estab- 

lish the linear difference equation 

x(tn+l) = eAJx{tn)+ J eA^~x)Bcwc{x)dx 

x(tn+l) = Ax(tn) + Bw(tn) 

(2.6) 

where A = eA<T, B = I, and w(tn) = P"+1eAc('"+1~T)BcH'c(T)cft. Depending on 

the assumption imposed on the noise term in the integral, two models can be devel- 

oped. The first model lets B = I so that the noise term entering the system is just the 
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last term in (2.6). This model is the so called discretized-continuous model. The sec- 

ond model assumes the continuous time white noise input is piece-wise constant dur- 

ing each integration period. This allows us to remove the noise term from the integral, 

simplifying the computation of the integral. This model is the so called direct-discrete 

model. These models are used to simulate the motion of a target. The process noise 

covariance for each of the above models is derived in the following-sections for differ- 

ent state vectors. 

The state and measurement equations for the discrete system are 

x(*„+1) = Ax(tn) + Bw(tn) (2.7) 

y{tn) = Cx(tn) + T>v(tn) (2.8) 

where y(tn) = [y]{tn) ... yj,(tn] \ C= [CJ ... C^\and 

v(tn)= \vT{t ) ... vL(t M   , with M sensors each taking measurements of length m,-. 

The process noise w(t„) and measurement noise v(tn) are assumed to have the 

following statistical properties. 

iiw = E[w(tn)] = 0 (2.9) 

Et^MO1] = °2CwA,_n (2-10) 

m, = E[v(0] = 0 (2.11) 

EIv^MgT] = P2CvA,-„ (2-12) 

EWXOT] = 0 (2-13> 

where 8„   „ is the Kroneker delta function given as 

«...-I1:""" (2->4) m-n 0,m£n 
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The volume of the covariance matrices can be scaled by changing the c and p. 

Q = E[BH>(OM>„)
T

B
T

] = c^CwwB^m_n 

R = E[Dv(rm)v(?/I)TDT] = p2DcvvDT5m_„ 

(2.15) 

(2.16) 

2.2 Target Tracking Models 

When we observe a small enough trajectory of the motion of a target, it appears 

to be smooth and continuous in nature. One approach is to begin with a continuous 

state equation and derive the associated discrete state and measurement equations. 

A band limited Gaussian white noise process is one approximation for the 

motion of a target. The sampling frequency needed to recover all the information of 

Autocorrelation function for bandlimited white noise process 

Autocorrelation function for Gauss Markov process 

Figure 3 Autocorrelation functions of two stationary processes: (a) bandlimited white 
noise process and (b) Gauss-Markov process 
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such a process is twice the highest frequency component of the band limited white 

noise process. Implicit in this statement is that an infinite set of samples are obtained 

from the random process in order to completely recover the signal. When only a finite 

set of samples are received, the error in estimating the signal between samples 

decreases as more samples are received. 

The autocorrelation functions of two Wide Sense Stationary (WSS) processes 

are shown in Figure 3. These processes are WSS because the mean is constant and the 

autocorrelation can be written as rxx(s, t) =rxx(x) where T =s-t. Figure 3a shows 

the sine function given by rxx(s, t) = sm(®ys-*)) # Figure 3b shows an exponential 

autocorrelation function given by rxx(s, t) = o2exp(-a\s -t\). 

Autocorrelation function for Wiener process 

Autocorrelation function for nonstationary white noise process 

Figure 4 Autocorrelation functions of two nonstationary processes: (a) Wiener pro- 
cess and (b) ramped white noise process 
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Another stochastic process is obtained by integrating a white Gaussian noise 

signal. This random process is the so-called Brownian motion or Wiener process, 

named after English Botanist Robert Brown who first discovered such motion in 

nature and Norbert Wiener who gave a rigorous mathematical study of such a random 

process, respectively. The Wiener process autocorrelation function is 

rxx(s, t) = c2min(s, t). The autocorrelation function for the Weiner process is plot- 

ted in Figure 4 (a). This process is no longer stationary because the variance 

ax(t) = rxx{t,t) = a2?, changes with time. This simple model might be appropriate 

for modeling the motion of a target in one dimension because it models the growing 

uncertainty. 

Figure 4b shows the autocorrelation function of a ramped white noise process. 

The signal is x(t) = <5«[twc{t), with t > 0. The autocorrelation of this process is 

rxx(s,t) = E[x(s)x(t)] = o2fsJtE[wc(s)wc(t)] = a2'5s_, (2.17) 

The variance of this process is a2 (0 = rxx(t,t) = a2?. Notice that the autocorrela- 

tion functions in each of the above plots have the same variance, but since the Wiener 

process is the integral of white noise it produces smoother trajectories than the nonsta- 

tionary white noise process. 

2.2.1 First Order Models 

The choice of the coefficients in (2.3) and (2.4) will determine the properties of 

the autocorrelation function of the process. The first model we develop is a Wiener 

process. Using (2.3) and (2.4) let the coefficients be 

Ac = 0,B   = c,Cc = 1,DC = 0 (2.18) 
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With these coefficients the state and measurement equations for a Wiener process are 

x(t) = cwc(t) 

y(t) = x(t) 

Using (2.5), the solution of the state vector is 

(2.19) 

(2.20) 

x(0 = x(t0) + oftwc(x)dx (2.21) 

where t0 is the initial time. The process noise entering the system is the integral of 

white noise. Assuming t0 = 0, let the initial state be a zero mean gaussian random 

variable i.e. x(0) ~ JV(0, p2). The mean of the Wiener process is 

U, (t) = E[x(t)] = 0. The autocorrelation of this Wiener process is 

rxJs, t) = E[x(s)x(t)] 

= E x(0) + c[w(ß)fl?ß   JC(0) + ajw(x)d% 
X n A n /- 
i-     s t 

= E a2JJw(ß)w(T)c?xrfß 
L     00 

+ E[x(0)2] 

(2.22) 

= G2JjE[w(ß)w(T)]cfxrfß + p2 

00 
St 

= CT2Jj5(T-ß)c?Xrfß + p2 

00 

= o2min(s, t) + p2 

where s, t > 0. This autocorrelation function is shown in Figure 4a with a = 1 and 

p = 0. When the initial estimate has zero variance (p2 = 0), it does not contribute to 

the autocorrelation function. The Wiener process is nonstationary and its second 

moment, rxx(t, t) = a2t + p2, increases linearly with time. 

Let y{tn) be noiseless measurements of the Wiener process at the discrete 
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times tl<t2< ... <tn. We will form least-squares estimates of this process based 

upon all measurements up to the present time. Assuming a linear estimator of the form 

P(0 =  S ak(t)y(tk) = aj(t)yn (2.23) 
k= 1 

where an(t) = la^t) ... an(t)\   G 91" xl,V?>0 is a vector of functions or filter- 

coefficients and yn = ly(fj) ... y(tn)\   e 9t"xl are the discrete set of measure- 

ments. Notice that the vector length of the filter coefficients an(t) and measurement 

vector yn increase as more samples are obtained. The entire signal can be estimated 

from all the samples from the Wiener process. Letting the error in the estimate be 

e(t) = y(t) -y(t„), the mean square error (MSE) of the estimator in (2.23) is 

f{an{t)) = E[e\t)] 

= my(t)-y(tn))
2] 

= E[(y(t)-aJ(t)yn)
2] (2.24) 

= E[y(t)2 - 2aJ(t)y„y(t) + aj(t)ynyjan(t)] 

= E[y(t)2] - 2aJ(t)E[yny(t)] + aJ(t)E[ynyJ]an(t) 

To solve for the optimal coefficients in an(t), we compute the gradient of the MSE 

with respect to the coefficients of an{t) and set it equal to zero. 

VJK(O) = -2E[yny(t)] + 2E[ynyJ]an(t) = 0 (2.25) 

Since there is zero measurement noise this allows us to use the autocorrelation func- 

tion in (2.22) to compute the expectations in (2.25). With this, the first autocorrelation 

is the vector 

r„(0 = E[yny(t)] = \E[y(tx)y(t)] ... E[v(f„M0]]T (2-26) 
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and the second autocorrelation function is the matrix produced by the expectation of 

the outer product of the measurement vectors 

R„ = Eüwfl = E 
y(u) 

y«n) 

y(h) 

y('„) 

TT- 

(2.27) 

(RH).j = ElyOjyitj)]    ije {1,...,«} 

Evaluating the expectations using E[y(s)y(t)] = min(s, t), we have 

r„(0 - R„«„(0 

min(t, tx) 

min(t, t2) 

min(t, tn) 

'i h - 'i 

h h ••■ h 

tx t2 ... '»_ 

«i(0 

a2(t) (2.28) 

This symmetric matrix can be factored into a lower triangular matrix filled with ones 

and an upper triangular matrix filled with the time differences between adjacent sam- 

ples 

R„ = 

'l tx . • h 
'l h • ■ h = 

'l t2. 
•   fn_ 

— 

1 0 ... 0 

1 0 ... 

1 ... 1 0 

1 1 ... 1J 

tx   tx 

0 t2-tl 

0 

t2-tx 

o '„-'„_, 

(2.29) 

The inverse of R„ is the product of the following two banded matrices. 

R:1 = 

'T'-^-'i)-1        ° 
0     (^-^l)"1   -('3-'2> 

o     (t3-t2r
i 

-1 

0 

0 0 

0 0 

0 

0 

••.-C,-'*-,)-1 

1   0  ... 0 0 

-1   1   0 ... 0 

... -1 ... 0 ... 

0  ... -1 1 0 

0   0  ... -1 1 

(2.30) 
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Using (2.28) the optimal coefficients are an{t) = 'R.~lrn{t) . The optimal least- 

squares estimate is 

y(tn) = al{t)yn = rJCOR"1^ (2.31) 

Using (2.24) and (2.31), the MSE of this estimator is 

f(an(t)) = E[(y(t)-y(tn))
2] 

= E[y(t)2]-2aJ(t)E[yny(t)] + aJ{t)E[ynyJ]an(t) 

= /n/n(?,0-2rJ(0R-1r/,(0 + rJ(0R«1R„R-1r„(0 

= t-rJ(t)R?ru(t) 

Using the MSE in (2.32), the error variance of the entire process can be computed for 

each additional sample. After simplifying (2.32) the smoothed, filtered, and predicted 

estimates have the following error variances. 

(2.32) 

/(«„(0) = 

t-t2/tx,       0<t<tl 

<t-tk+l)(t-tk) 
t t        .    tkZt£tk+l (2.33) 
lk+\ ~lk 

t-t, t   <t 

Since there is zero measurement noise, the variance of the estimation error will go to 

zero for each sample of the Wiener process. The prediction variance increases linearly 

until the next sample is received, and the smoothed or interpolated estimates have a 

quadratic variance between samples. This process is illustrated in Figure 5. The slope 

of the prediction variance is equal to the variance of the continuous time white noise. 

In this simulation the variance of the white noise is one and the slope of the prediction 

variance in Figure 5 is one. If we impose a bound on the prediction estimate variance, 

this immediately places restrictions on the maximum sample period. This gives us the 

intuitive feeling that the longer we wait to sample, the more the error variance will 

grow. 
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When there is both measurement and process noise, the error variance will 

never go completely to zero. This must be taken into account when designing the esti- 

mation algorithm. This leads to the development of the Kaiman filter. The Kaiman fil- 

ter allows for uncertainty in both the state equation model and the measurements. 

f(t -T It ) 
n ,    . IT 

f(t   It v n   n ' 
f(t +T It ) v n rr 

12 3 4 5 
time (s) 

Figure 5 Error variance of smoothed, filtered, and predicted Wiener process 

Based on these two uncertainties, the Kaiman filter computes optimal estimates by 

weighting old estimates with new measurements appropriately. This concludes the 

development of the Wiener process. The Wiener process is also a Gauss-Markov pro- 

cess because the state has Gaussian density and the process is Markov. 

A different Gauss-Markov process can be generated by letting the state transi- 

tion matrix be a nonzero scalar. The coefficients for the continuous time process are 

A   =-a,B   = 1,C   = 1,D   =0 (2.34) 
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With these values, the state and measurement equations have the form 

x(t) = -ax(t) + wc(t) (2.35) 

y{t) = x(t) (2.36) 

Let the white noise input have variance rww(s, t) = E[wc(s)wc(t)] = 2aa2d(s-t). 

Using the coefficients defined in (2.34) with the solution of the general differential 

equation in (2.5) gives 

x(t) = e-atx(0) + je(x-Vawc(T)dT (2.37) 

where t0 = 0. The mean of this process is \nx{t) = E[x(t)] = e_a'E[>(0)]. Notice 

that this process will be stationary only if the mean of x(0) is zero, otherwise the mean 

will exponentially decay or increase depending on the sign of a. With the initial state 

variance E[x(0)2] = c2 the autocorrelation function of x(t) is 

r(s, t) = E[x(s)x(t)] 

= E 
LV 

= E 

e~asx(0) + je^-s^awc(x)dx   e~atx(0) + JVß-')awc(ß)Jß 
0 A o 

s t 

JA 

e-a{s + OjJe(x + ß)«wc(ß) wc{%)d$d% 

00 

+ a2e~a(-s + ') 

( 
= p-a(s + t)n2 

s t 

2a JJVT + ß)a8(T - ß)</ß<ft + 1 
^    oo 

> 
, let u = min{s, t) 

(2.38) 

= e-fl(* + 0o2 \laje2xadT+l 
^   o 

= e-a(-s + t^a2(e2xa\u0+l) 

=  e-a(s + t)a2(e2ua_ \ + \) 

= §2e-a(s + t-2u) 

= c2e-a\s~^ 
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The plot of this autocorrelation function was shown in Figure 3b. 

2.2.2 Second Order Models 
The Wiener process model developed in Section 2.2.1 can be extended to sec- 

ond order models. The general technique is to let some nth order derivative of a ran- 

dom process equal white noise. Using (2.3) and (2.4), let the coefficients be 

Ac = 
0 1 
00 

,BC = a 00 
0 1 

>CC= [l o],Dc = a (2.39) 

The state vector is x(t) = \p(t) v(o]T = \p(J) ${$ where;?(# andvßj are the 

position and velocity, respectively. With these coefficients for the continuous time 

model, we get 

x{i) 0 1 
0 0 

x(t) + a 00 
0 1 

"c(0 (2.40) 

y{t) = [l o]*(0 + «vc(0 (2.41) 

In this model, the velocity is a Wiener process and the acceleration is white noise. The 

observability matrix for this system is 

0(AC, Cc) = 
CCAC 

1 0 
0 1 

(2.42) 

Since this matrix is full rank, the system states, position and velocity, are observable. 
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Solving this differential equation and forming the difference equation, we have 

o l 

*('„+I) = eL°0J x(tn) + c j e "+ 
0 1 
00 

1 T 

0 1_ 

1 T 

0 1_ 

<('„)+<* J 
1 '„+l-f 
0       1 

00 

p l 

0 0 

0 1 

wj%)dx 

Wl(T) 

w2(x) 
rfc 

i r 
o 1 

'„+.r 

X(0 + CT J 

1 '„+1"^ 

0      1 
w2{x)dx 

t„ L 
1 

w2(T)fifr 

= Ax(/„) + w{ttt) 

The noise term entering the linear system has the following covariance. 

(2.43) 

E[n;(r„)iv(^)T] = E 
'„+ n+\ 

= G< 

a 
L       t„    L 

'n + 1 tn + 1 n 

'„+1-* 

i 

/     '•+![ 

w2{x)dx 
\ 

a '„+l"ß 
1 

kTn 

w2(ß)rfß 

1 

1 

[rB + I-ßl]E[w2(ß)w2(x)]dßrfr 

[^+1-ßl]5(T-ßMß^ (2.44) 

= a^ J ('n+l-'O2'»-*!-* rfc, f„+i-T = Y 

Or 

-c2J Y2 Y 

.Y lj 

= «2 dy = a r3/3 r2/2 
r2/2   r 

This model is referred to as a discretized-continuous model because it was derived 

from a continuous time state equation. 

Another approximation can be obtained by assuming the white noise to be con- 

stant within the sampling interval. Since the noise term is constant within the integra- 
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tion period, it may be removed from the integral. The state equation in (2.43) becomes 

/ »+1 i-           -i 

*('«+l) = 
1 T 
0 1_ 

x(t„) + cw2(tn) J tn+X-l 

1 

= 1 T 
0 1_ 

x(t„)-aw2(t„)j 
T 

Y 
_1_ 

dy 

= 1 T 
0 1_ 

x(tn) + c T2/2 
T _ 

w2 (O 

rfr 

= A*(/,i) + Bw(/B) 

and the covariance of the noise term is 

(2.45) 

E[Bw(tn)(Bw(tn))
T] = E = E < y T2/: 

L r 
■ w2( '«) a r

2/2 

J  . 

= a2 r2/2 
E[w2(^)2][rV2r] 

= c2 r4/4 

J3/2 

r3/2 
J2_ 

(2.46) 

This is called a direct discretized model. Notice that in the discretized continuous 

model the integral of the outer product (dyad) causes the matrix to be full rank. How- 

ever, in the direct discretized model, the covariance is approximated simply by an 

outer product of two vectors which makes the matrix singular. Both models are 

approximations to simulate how the covariance of position and velocity change with 

the sample period. In the discretized continuous model, an integral must be evaluated 

to compute the input. In the direct discretized model, the input is simply a piece wise 

white noise signal multiplied with a gain. 

The next model is used for tracking the position of a target in the x-y plane. 

This model generates a Wiener process in two dimensions. For the model described by 



24 

(2.3) and (2.4), let 

A   =0,B   = 1 0 

0 1 
,C   = 1 0 

0 1 
>DC = 

a Y 

LY PJ 
(2.47) 

The state vector is x(t) = \px(t) p {tyi   where/?xß) mdpy(t) are the positions in the 

x andy dimensions, respectively. With these coefficients for the continuous time 

model, we get 

x(t) = w(t) 

y{t) = x(t) + a Y 

LY P. 
vff(0 

(2.48) 

. (2.49) 

When the noise vector entering the system is uncorrelated, then the motion in each 

dimension can be modeled independently. This technique allows for modeling of tar- 

get motion in each dimension and can reduce the size of the state equations. 

The observability matrix for this system is 

0(AC, Cc) 
CCAC 

10 0 0 

0 10 0 

IT 

(2.50) 

Since the observability matrix is full rank the state vector is observable. The observ- 

abililty matrix indicates if a system is observable, however, it does not take into 

account measurement noise which is needed to figure the quality of the observations. 

A better measure would be to consider a matrix function P( Ac, Bc, Cc, Dc) • that takes 

into account all the coefficients and provides covariance information of each of the 

states. 

2.2.3 Third Order Models 

The previous models can be extended to a third order system. Using (2.3) and 
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(2.4), let the matrix coefficients be 

K = 
0 1 0 
00 1 
0 0 0 

,B   = c 
0 00 
0 0 0 
0 0 1 

,CC= [i 0 0],DC = a (2.51) 

The state vector is x{t) = [p(t) v(t) a(t)\   where/?#), v(t), and a(t) are the position, 

velocity, and acceleration, respectively. In this system, the acceleration is a Wiener 

process requiring its derivative (jerk) to be white noise. With these coefficients for the 

continuous time model, we get 

x{t) = 
0 1 0 
0 0 1 
0 00 

x(t) + a 
0 0 0 
0 0 0 
0 0 1 

wc(t) 

y(t) = [l oo]*(0 + avc(o 

The observability matrix for this system is 

(2.52) 

(2.53) 

0(AC, Cc) CCAC 

CCAC2 

1 0 0 
0 1 0 
0 0 1 

(2.54) 

Since this matrix is full rank, the system states position, velocity, and acceleration are 

observable. Solving this differential equation and forming the difference equation, we 
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have 

*('»+i) 
= eL 

o 1 o 
00 1 
0 0 0 :(tn) + c \ e 

0 1 0 
00 1 
000 

0 0 0 

000 

00 1 

wc(x)dx 

1 T T2/2 
0 1 T 
0 0 1 

1 T T2/2 
0 1 T 
0 0 1 

x(tn) + c J 

x(tn) + o j 

ltn+l-x(tn+l-x)2/2 

0      0 1 

w3(x)dx (2-55) 

1 

w3{x)dx 

The process noise covariance for this discretized-continuous model is 

Q(7) = E[w(tn)w(tn)?] 

{tn+x-x)2/2 

1 

w3(x)dx 
'»+i 

«J 
(*„+1-ß)2/2 

1 

^1 

w3(ß)</ß 

y J 

= a2 

'.+i 

C„+i-x)2/2 

tn+\-^ 
[an+1-ß)2/2ffl+1-ßl]5(x-ß)^x 

(2.56) 

(^ + 1-T)4/4(^+1-t)V2(^ + 1-x)V2 

(/JI+1-T)V2    {tn+x~X)2 tn+l-X dx, tn + l-x = y 

*l 
y4/4 y3/2 y2/2 
y3/2     y2 y 

y2/2    Y       1 

=   rr2 ^Y = C7 

r5/20 r4/8 r3/6 
r4/8 r3/3 r2/2 
r3/6 r2/2   T 

Notice that Q(T) is full rank and that a2 is the variance of the white noise entering 
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the system. The other covariance model we can develop from (2.55) is computed by 

assuming the white noise to be constant during each sample interval. The difference 

equation for this direct-discretized model is 

*('„+i) = 
1 T T2/2 
0 1 T 
0 0 1 

x(t„) + aw3(tn) 
r3/6 
T2/2 

T 

(-2.57) 

The process noise covariance in this direct discretized model is 

Tl   = rr2 Q(T) = E[Bw(tn)(Bw(t„)y] = a 
T6/36 T5/12 T4/6 

T5/12  r4/4  T3/2 

T4/6   P/2     T2 

(2.58) 

Notice that this matrix is rank deficient. The white noise variance is the same as in the 

discretized-continuous model. 

2.2.4 Higher Order Models 
The previous models can be extended to higher order systems. For example, 

we can model the motion of a target in 2 dimensions with 4 states x, x, y and y. Mod- 

eling the motion in x and v as independent and using a direct-discrete model we get 

A = 

iroo 
0 10 0 
ooir 

,B = = a 

0 0 0 1. 

T2/2    0 
T       0 
0    T2/2 

,c = 1 0 ,D = a ß 
_ßY_ 

0       T 

(2.59) 

where correlated measurements are taken in x andy. The process noise covariance in 



this model is 

Q(7) = E[Bw(tnKBM>(tn))
1] = a 

T4/4 P/2    0       0 
r3/2    T2      0        0 

o     o   r4/4 r3/2 
0        0     T3/2    T2 
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(2.60) 

The state equations developed in this chapter for discrete systems, with coeffi- 

cients A and B, are used in simulations to model target motion. The state transition 

matrices and process noise covariances are used in sensor management techniques for 

solving for the optimum sample rate. 

2.3 Estimating Process Noise Variance 

The simulation tracking models derived in Section 2.2 have shown a develop- 

ment of the state transition matrices and process noise covariance matrices. The state 

transition matrix is a function of the sample period. The process noise covariance is a 

function of the sample period Tand variance a2. Both T and a2 are design parame- 

ters. The choice of the variance of the continuous time process noise is used for "tun- 

ing" the model to the actual motion of the target [3]. 

This variance may be estimated based upon observed data and a priori knowl- 

edge concerning target dynamics. One technique developed by Singer [21] uses a 

mixed probability density for modeling target motion. For example if we model a tar- 

get's acceleration in one dimension as a random variable and we have information 

concerning the target's maximum acceleration, the mixed density would be 
P(a) 

max 
,p(0) 

max 

- a max a 
a 

max 

Figure 6 Mixed density for the target acceleration in one dimension 
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where the height of the continuous portion of the density is computed so that the area 

integrates to one. The acceleration random variable is zero mean with variance 

cj2 = E[(a-^)2] 

= \" a2p(a)da 

" f"" ^ip^S(a-allua)+pmtJ(a + amax)+p(0)S(a))da + 
J-°max 

f™ yi~pi0)~2Pmax)da 
<*max *-"max (2.61) 

2    Jl-P(0)-2pmax)(ai   " 
^rmax   max max~max 7/7 

*"umax 

2 (l-P(°)-2Pmax)2aLx 
^Pmaxamax ya 3 

max 

= %£(l+4/,WflX-Jp(0)) 

Using this model the variance is shown to be a function of the maximum acceleration 

and the probabilities of the Dirac delta functions from the mixed probability density. 



Chapter 3 

CENTRALIZED SENSOR MANAGEMENT 

The state error covariance of the Kaiman filter can be described by the discrete 

Riccati equation. The discrete matrix Riccati equations are defined and then two opti- 

mization problems are introduced. We then list and give some properties of seven dif- 

ferent covariance control metrics for either maintaining the prediction covariance or 

the update covariance. 

The effect of sensor resolution on the steady-state solution to the Riccati equa- 

tion is examined. The results of this analysis are then used to develop steady-state 

covariance control through the selection of sensor combinations. The analysis is then 

extended to the effect of sample period on the discrete Riccati equation for specific tar- 

get models. This leads to the use of the sample period to maintain the prediction error 

covariance close to the desired prediction error covariance. The last two sections pro- 

vide solutions to the scalar and matrix Riccati equations. 

3.1 Centralized Kaiman Filter 

Within a certain set of assumptions, the Kaiman filter is an optimal adaptive fil- 

ter for combining old estimates with new measurements. The state and measurement 
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equations are 

*('„+i) = Mtn)x(tn) + B(tn)w(tn) (3.1) 

y(tn) = C(tn)x(tn) + D(tn)v(tn) (3.2) 

The three types of estimation are prediction, filtering, and smoothing. In prediction 

problems we form estimates of a future state of the process, in filtering problems the 

estimates are of present values, and smoothing refers to forming estimates of past val- 

ues of the state vector. These three types of estimation are given in (3.3), (3.4), and 

(3.5), respectively. 

E[x{tn + T)\y{tn),y{tn_x),...] = x{tn + T\tn,tn_x,...) (3.3) 

E[x{tn)\y{tn),y{tn_x), ...}=x{tn\tn,tn_x,...) (3.4) 

E[x(tn-T)\y(tn),y(tn_x), ...} = x(tn-T\tn,tn_x,...) (3.5) 

where (=) means defined to be. The T > 0 indicates the future or past times at which 

the prediction or smoothed values are being estimated. Since the random process in 

(3.1) is a 1st order Markov process, we can uses Bay es' rule for conditional densities 

to simplify the expectations in (3.3), (3.4), and (3.5). Bayes' rule for the filtering prob- 

lem in (3.4) can be simplified as follows 

p(xn\yn>yn-\>yn-2>-) =   D(v v—- r- 1 PKy„,y„-\>yn-2>•••) ., „ 
(3.6) 

, . ,  p(x*> y») 

so that the conditioning is only on the most recent measurement. A similar simplifica- 

tion can be done for the prediction and smoothed estimates. In the Kaiman filter, the 

above simplification allows filter estimates to be formed from the latest received mea- 

surements. 

We assume E[w(tn)} = E[v(tn)] = 0, E[Bw(tn)w
T(tn)B

T] = Q(tn), 
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E[Dv(tn)v
T(tn)D

T] = R(tn),andE[w(t„)vT(t„)] = 0. The process noise covari- 

ance can be modeled in several different ways. The first method is called the dis- 

cretized continuous model and the second method is called the direct discretized 

model. These two models were reviewed in Section 2.1 and Section 2.2. One form of 

the prediction and update equations in the Kaiman filter is 

Prediction Equations: 

*(tn\tn-0 =A(f„)*(fJI_,]/„_,) 

H*n\*H-l)  =  CC.)*<'i.|'..-l) 

P('*|'„-i) = A(ra)P(fII_1|/JI_,)AT(f1I) + B(rJ,)Q(gBT(r.) 

Update Equations: 

K('„|'„) = V(tH\tH)Cr{tH)R-HtH) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

where, 

CT(tn)R-Htn)C(tn) 

C,('„) 

cM{tn) 

"|T 
Rr!(^) 

**/('-) 

-  I CJ(tn)RjHtn)Cj(tn) 
(3.13) c,(g 

with T a subset of sensors of size |T| = M. This is the so called information matrix 

filter [3] because it uses the inverse of the information update from (3.10) to compute 

the Kaiman gain in (3.11). This recursion defines the Kaiman filter. The state update in 

(3.12) can also be expressed as 

*W = (I-P(^|OCTR-,C)Ax(^_1kn_1) + P(/J/n)CTR-l>;(g     (3.14) 
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where the time dependence on C and R have been suppressed. The process noise cova- 

riance Q(tn) and gain B(tn) do not appear directly in (3.14). The matrices Q(f„) and 

B(/„) are subsumed into the state error covariance. This is a "coefficient" adaptive filter 

because the gains between the previous state estimate x(tn _ x I tn _,) and the new mea- 

surement y(tn) change based upon the state error covariance P(tn\tn). 

The Kaiman filter recursion can not be propagated off-line because it is depen- 

dent on new measurements. The state error covariance or state information matrix can 

only be propagated off-line given that it is known what sensors are used for each sam- 

ple and what sample periods are used. 

The discrete matrix Riccati equation (DMRE) is obtained by combining equa- 

tions (3.9) and (3.10). In Section 3.6 and Section 3.7, solutions for the discrete scalar 

Riccati equation and DMRE are developed. A closed form solution of the DMRE is 

helpful because it allows quick computation of the steady state error covariance. Let us 

assume constant coefficients. With P(« + 1) = P(f„.+, Itn) and ~P(n) = J>(tn\tn_x), 

substituting the inverse of (3.10) into (3.9) and using the Matrix Inversion Lemma [3] 

to compute the inverse of the matrix addition, we get 

P(/i+l) = A(P-1(«) + CTR-,C)-1AT + Q 
. (3-15) 

= Q + AP(iO AT - AP(«)CT(R + C¥(n)CT)-lCF(n)AT 

This is the DMRE for the prediction error covariance. In a similar manner, we can take 

equation (3.9) and substitute its inverse into (3.10). With P_1(") = Y~l(tn\ta) and 

P-'(H- 1) s V~](tn_l\tn_,), we can write (3.10) as 

P-'(«) = (AP(«-1)AT + Q)-1 + CTR-1C 

= Q-1+CTR-1C-Q-1A(P-'(«-l) + ATQ-1A)-IATQ-1 (3'16) 

where the Matrix Inversion Lemma [3] was used in a similar manner as in (3.15). 

Comparing these two equations, we notice that ?(n) appears four times on the right 
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side of (3.15), however P_1(w- 1) only appears once on the right side of (3.16). This 

shows how the information matrix recursions in (3.16) are more computationally effi- 

cient than the prediction error covariance recursions in (3.15), because the constant 

matrix terms in (3.16) can be computed off-line and stored. Propagation of these equa- 

tions is one technique for finding a steady state solution for the DMRE. 

3.2 Centralized Covariance Control Approach 

The approach taken is to specify two desired covariance matrices, one for the 

desired prediction covariance T?d  and another for the desired update covariance Pdu. 

We can form two separate minimization problems by considering (3.9) and (3.10) sep- 

arately: one minimization for computing the optimum rate and the other for computing 

the optimum resolution. The minimization problem associated with finding the opti- 

mum rate is 

T0{tn) = arg min f(V(tn + T\tn),T>dp(tn)) 

vr>o 
where Y(tn + T\tn) = F(tn + {\tn) is the prediction covariance given in (3.9) and 

T0(tn) is the optimal sample period at time tn based upon some metric/(»). The pre- 

diction covariance is a function of the sample period. Due to sensor limitations con- 

cerning maximum sample rate, the minimization also specifies a minimum sample 

period given by rmjn. This minimization is over the uncountable, infinite set T. 

The minimization problem associated with finding the optimum sensor resolu- 

tion (subset of sensors) is 

T0(tm) = arg min gi^Ht^YäKO) n ia, 

r 

where P_1 (tJtn) is given in (3.10) and is dependent on the choice of sensors T as 

determined by the sum in (3.13). The optimal set T0(tn) at time tn is based upon the 
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minimization of some metric #(•). This minimization is over the countable, finite set 

T. When covariance matrices and information matrices are symmetric and positive 

definite, they can be represented by the level curves of there associated quadratic 

forms, where the square root of the eigenvalues are the lengths of the semi-axes and 

the eigenvectors indicate the directions of those axes, i.e. given P > 0 the ellipse of P 

is ellipse^?) = {X;.X:
T
P

_1
JC = 1} . All subsequent ellipses are generated using this 

function. Two ellipses are plotted in Figure 7 showing an elliptical annulus for the two 

desired covariance matrices. 

Elliptical annulus 

Figure 7 Elliptical annulus describing desired update covariance and desired predic- 
tion covariance 

Since many data analysis algorithms require rigorous upper bounds on estima- 

tion error, we primarily considered covariance control techniques that drive the actual 

covariances inside the desired covariances. Other techniques involve maintaining the 

actual error covariance within certain bounds of the desired error covariance. The plots 

in Figure 8 show several of these ellipses where the dark solid line indicates a desired 
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Rotation Scale Rotation and Scale 

--55 0 
(a) 

-5 
-5 0 

(b) 

-5 
0 
(c) 

Figure 8 Illustration of (a) rotation, (b) scaling, and (c) rotation and scaling 

covariance and the thin solid line indicates different update or prediction covariances. 

Plot (a) shows a rotation of the desired covariance, plot (b) shows a scaling of the 

desired covariance, and plot (c) shows a combination of these two where the desired 

covariance is rotated and scaled. 

Some metrics we have considered for comparing two covariance matrices are 

the matrix 2-norm, Frobenius norm, traces, determinants, relative entropy, and metrics 

based upon the singular value decomposition (SVD). In general, each metric may be 

considered for controlling either the prediction or update covariance (information) 

matrices. Let Vd be a symmetric positive definite desired prediction or update covari- 

ance matrix i.e. Vd = Pj > 0. Let P be a symmetric positive semidefinite prediction 

or update covariance matrix, i.e. P = PT > 0. 

Each metric is a function of these two matrices. The first four metrics use the 

matrix difference, M = Yd - P. The last metric uses the matrix product, N = PP^1. 

The two metrics in (3.27) and (3.28) use the SVD where the decompositions for the 

desired covariance and update covariance are 

p, - üAü/ (3.19) 
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and 

P = USU* (3.20) 

respectively. The singular value vectors for the desired and update covariances are 

defined to be 

Zrf = rfmg(Srf)e^xl (3.21) 

and 

Z = diag(S)G'3iNxl (3.22) 

respectively, where diag(*) denotes a vector containing the diagonal elements of the 

matrix contained in the argument. Denoting the absolute value as |»|, the determinant 

function as det(»), and the trace function as tr(*), the seven metrics we considered are: 

2-norm, G(M) = ||M||2 = <7j(M) 

N 

Trace function, T(M) = \tr(M)\ = 

/= 1 

N 

i= l 

N 

1 M, 
i= l 

Determinant function, A(M) = |öfer(M)| = 
N 

i= 1 

N-tr(\VdV*\)    „ 
Projection metric, J(P, Prf) =  j- '- + jjS^ — S|j2 

(3.23) 

Frobenius norm,    F{M) = \\M\\F =   /£a?(M) = Jtr(M2) (3.24) 

(3.25) 

(3.26) 

(3.27) 

N-tr(\UdU*\)    (      ZjZ  \ 
Scale Invariant Projection metric, £(P, P^ =  L_£—L + h a (3.28) 

Kullback-Liebler metric, £(N) = ±(tr(N) -N- \n(det(N))) (3.29) 

The seven metrics excluding (3.27) and (3.28) are commonly used and their properties 
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are well documented. Metrics (3.27) and (3.28) were specifically developed for covari- 

ance control based upon maintaining the direction of the semiaxes of an ellipse and the 

length of those axes. Since these two metrics are new we prove several properties of 

these metrics in this section. 

The first two functions are norms because they satisfy the following properties 

[23] 

1) /(A) > 0, with equality iff A = 0 
2)/(aA) = |cc|/(A) (3.30) 
3)/(A + B)</(A)+/(B) 

where A, B e W x N = S and/«): 5 -> SR. The last property is the triangle inequality. 

The remaining functions are not norms because they do not satisfy these three proper- 

ties. All seven functions are greater than or equal to zero. Metrics also have a rigorous 

definition. Metrics are a binary operator defined by a mapping g(v): (S, S) -» 9t that 

measures the "distance" between two points in S. Metrics have the following proper- 

ties [23] 

1) g(A, B) > 0, with equality iff A = B 
2)g(A,B) = g(B,A) (3.31) 
3) g(A, C)<if(A, B)+g(B,C) 

where A, B, C e 3iN x N = S. Since, the last three functions do not satisfy all the con- 

ditions of a metric, they might be more appropriately called "pseudometrics". How- 

ever, since all the functions satisfy some of the conditions, for simplicity, we will 

genetically call each of the functions metrics or "distance" measures. 

The seven metrics can be used in combination with checking the condition 

X    (M) > 0, which will insure that the error covariance is less than the desired error 

covariance. These metrics are not equivalent when comparing the difference in covari- 

ance matrices versus the difference in their corresponding information matrices. 
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To illustrate how these metrics perform, we considered a suite of 7 sensors 

with their associated sensor information matrices in 9?2*2. Each metric in (3.23)- 

(3.29) was computed for all 27 sensor combinations. The set of sensors that mini- 

mized each respective metric was chosen as the optimal sensor combination. Figure 9 

shows the set of 7 measurement information ellipses using thin solid lines and the-leyel 

curve of the desired information update as a thick solid line. The ellipses representing 

the information matrix for each sensor are labeled as R"1, with /=1,2,..., 7 denoting 

the sensor number. 

-1.5 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Figure 9 Ellipses of desired information and sensor information matrices 

Figure 10 shows the optimal sensor combination at the top of each subplot for 

the seven metrics. The ellipses associated with the desired information matrix is indi- 

cated by the thick solid lines and the ellipses associated with the optimal sensor combi- 
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nation is indicated by the thin solid lines. 

2-norm 
((.N = {1 4 5} 
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-4-2       0       2 
Trace function 
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-4-2       0       2       4 
Projection metric 

<t>j = {3 4 5} 
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-4     -2 
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Frobenius norm 
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-4-2024 
Determinant function 
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-4-2       0       2       4 
Scale Invariant Projection metric 
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0 

-2\ 

2       4 -4-2 
Kullback-Liebler metrics 
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♦L = (4 5} 

-4-2024 

Figure 10 Illustration of covariance control measures: (a) 2-norm, (b) Frobenius 
norm, (c) Trace function, (d) Determinant function, (e) Projection metric, (f) Scale 

Invariant Projection metric, and (g) Kullback-Liebler metric 
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The 2-norm and the Frobenius norm exhibit similar properties when selecting 

sets of sensors. The Frobenius norm of a particular set of matrices is always greater 

than or equal to the 2-norm ofthat same set. This is because the 2-norm is equal to the 

largest singular value while the Frobenius norm adds all of the singular values, includ- 

ing the largest. 

The trace function has the lowest computational complexity-because it only 

requires the sum of the diagonal elements of M. This computation is order N. 

The determinant function is based on using the determinant and computes the 

area of the differences. Plot d of Figure 10 shows the area metric. This metric exhibits 

a property where the selected ellipse is closest to being tangent (at two points) to the 

desired ellipse. When the two level curves are tangent at two points, the matrix differ- 

ence is not full rank and the quadratic form will be either positive semidefinite or neg- 

ative semidefinite, depending on which level curve is contained within the other. 

Because the semidefinite matrix has an eigenvalue equal to zero, the computation of 

the area metric in (3.26) is zero. The area metric is suitable for minimizing one of the 

singular values, however, a small minimum eigenvalue can mask the larger eigenval- 

ues, when multiplied together. 

The projection metric combines a trace operation with a vector norm. The vec- 

tors I,d and £ contain the singular values of Prf and P, respectively, and are called 

the singular value vectors. The term jl,d - I||2 measures the distance between the sin- 

gular value vectors. This metric is labeled as being a projection because the trace oper- 

ation takes each singular vector associated with one matrix (ordered according to 

largest to smallest singular value) and projects them onto the singular vectors of the 

other matrix. The trace and vector norm are both order N computations. Most of the 

computation of this metric is involved with computing the SVD of each of the covari- 

ance matrices. The SVD of the desired covariances Pd can be computed off-line so 
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that the computation involved with computing the SVD could be reduced by half dur- 

ing real-time operation. The projection metric has the following properties 

N-tr(\UJJ*\) 1.   J(V,rä) =  ±J-Jl + pd-I\\2>0 with equality iff P = Vd 

= - %^-^ + M^-n,   Voce* 2. J(aV,a?d) N 

3. 7(P,Prf) = •/(?„ P) 

Proof: 

Let the norm and trace functions be denoted by h{Zd, S) = \Ld -1\\2 and 

g(Ud, U) = (N-tr(\jJd\J*\))/N, respectively. The matrices composed of the singu- 

lar vectors in the SVD are Vd = [u*d] ... tt*J   and Ü = j^*, ... u*^   -Using 

the Cauchy-Schwarz inequality we can show the function g(Vd, U) is bounded by 

zero 

W N 

fr(M*|) =  2 \udiut*\ < £ KIWI = N (3.32) 
i = 1 i = 1 

with equality iff udi and ui are each linearly dependent. This proves the first property. 

The second property is true because g(Ud, U) is invariant to scaling of P and 

~Pdu; and h(Ld, I) is a norm with the property h(aLd, aZ) = \a\h(Ld, S). The sec- 

ond property shows that the projection metric is an affine function when scaling both 

covariances. The third property can be shown by recognizing that 

fr(|UrfU*|) = fr(|UU/|) and that |Irf-I|2 = p-Sjr 

The scale invariant projection metric attempts to match the alignment and 

shape of the ellipsoids of P and Prf. The singular value vectors £ and 'Ld describe the 

"shape" of the ellipsoids (relative magnitudes of the eigenvalues) and the vectors con- 

tained in U and Vd define the relative orientation of these ellipsoids in state space. 
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ZJZ 
The term 1 -.,    ,,,.,■ is minimized when the "shape" of the two ellipsoids are the 

same and (JV- fr(|UrfU*|))/7V is minimized when the ellipsoids are aligned. Four 

properties of the scale invariant projection metric are 

N-tr(\\JdlJ*\)    (       ZJZ  N 
1.   K(V, Vd) =  i_i_i. + (i _ _J_j >o with equality iff P^aP 

JII^IL 

2. 2>£(P,Prf)>0 

3. *«xP,ßP,) =K{V,Vd)    Va,ße<K 

4. 7(P, Prf) = J(P„ P) 

Proof: 

Let the cosine and trace functions be denoted by h(I.d, Z) = 1 -,,    ,,,,,, and 

g(Vd,\J) = (N- tr(\VdV*\))/N, respectively. The trace function g(Vd,\J) is the 

same as in the projection metric. The cosine function h{1Ld, S), is non-negative 

because 1 - „    ,,,,,, = 1 - cos (0) > 0 with equality iff 1.d = aZ. The cosine of the 
F</Pzii 

angle between the singular value vectors is non-negative because the singular value 

vectors lie in the all positive orthant. This proves the first property. 

The second property may be shown by maximizing g(Vd, U) and h(Ld, E), 

respectively. When the product U^U* has zeros on the diagonal then the function 

g(Ud, U) achieves a maximum of one. Now let ~Ld = H       (j    and 

1=10      0    -Then  lim ,,    ,,,,,, = 0, so that h(Ld, S) achieves a maximum L     '"  J #-> °°||Ld\\\\m 
equal to 1. This means that the metric K(T>, l*d) is upper bounded by 2 as the vectors 

become infinite in length. When the matrices belong to a finite dimensional space the 

upper bounds will be less than 2. For example with P, Vd e Si2x2, the maximum angle 

between the singular value vectors is 45 degrees in which case the maximum of 

Ä(2^ X) is 1 - cos(45) = 1 - (Jl)/2 = 0.2929 and the maximum of K(P, Fd) is 

1.2929. 

The third property is true because scaling either matrix only scales the singular 
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value vectors which does not change the angle between the vectors. The scale invariant 

projection metric could be useful for choosing the resolution of measurements inde- 

pendent of the rate of measurements. The last property is true because 

fr(|UrfU*|) = *r(|UU/|) and h(Xd, I) = h(L, I,). 

The Kullback-Liebler metric measures the relative entropy between two ran- 

dom vectors with associated densities. We use it to measure the relative entropy 

between a desired density and the actual density of the state vector. The Kullback-Lie- 

bler metric is derived from the definition of relative entropy. The relative entropy is the 

AT fold integration 

L(/,g) - /.../*(*„ ••.,%)in(^;;;;;"j)^-..^       0.33) 

where f(x) is the desired density and g(x) is the actual density of random vector x. 

Let f(x) and g(x) have the following Gaussian densities 

f(x) = (2nrN/2det(?d)-mQxp(-l-xTj>Jx^ (3.34) 

g(x) = (27ü)-W2i^(P)-1/2expf-ixTP-1jcj (3.35) 

Using a simpler notation to represent the N fold integration and iV arguments we have 

L<f.g) - i«x)*{*®fr* (336) 

= jg(x)]ng(x)dx-\g(x)\nf(x)dx 

Expressing the quadratic forms in f(x) andg(*) as p(x) = -~xTPd
lx and 
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q(x) = --xT¥~lx, respectively, the first integral in (3.36) is 

jg(x)\ng(x)dx = jg(x)\n[(2n)-N/2det(1>)-l/2exp(q(x))]dx 

= jq(x)g(x)dx-¥]n(2n)\g(x)dx- l-\n{det{V))\g{x)dx 

1 ,      N   ' 1 C3.37) 
= ~trace{V-iV)~\n{2K)--\n{det{V)) 

= -f-f ln(27ü)-|ln(^(P)) 

The second integral in (3.36) is 

-jg(x)ln(f(x))dx = -jg(x)\n[(2%)-N/2det(J>d)-"
2
exp(p(x))]dx 

= -jp(x)g(x)dx + ^\n(2%)jg(x)dx+l-\n(det(Vd))jg(x)dx{33^ 

= ir/-ace(PPrf-
,)+|ln(27c) + iln(^(Prf)) 

where \q{x)g(x)dx and \p(x)g(x)dx are computed by using properties of the trace 

operation. The trace of a scalar function is the same function and the trace commutes 

with expectations. 

jq(x)g(x)dx = E[q(x)] = trace(E[q(x)]) 

= -hE[trace(xT?-lx)]) 

= -l-(E[trace(^xx^)]) (3 39) 

= ~trace(¥-lE[xxT]) 

= -^trace(V-^) = ~ 
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Performing the same computation on the second integral we get 

jp(x)g(x)dx = E[p(x)] = trace(E[p(x)]) 

= -l-(E[trace{x^-d
xx)]) 

= ~(E[trace(xxTPd
1)]) (3.40) 

= ~trace(E[xxT]Fd
l) 

1 
T = -±trace(PVjl) 

Recognizing that the new argument can be expressed as PP^1, the final integral in 

(3.36) has the form 

I(PP^) = -%-\ln(det(F))+l-trace(FVd-l) + l-ln(det(Fd)) 
11 l (3.41) 

= i(/race(PP^)-AT-ln(^(PP^))) 

which corresponds to the metric given in (3.29). This metric can be shown to be posi- 

tive. Let the eigenvalues of PP^1 be A,,-. The equation in (3.41) is then 

^W) = \  X h-X- S Wh)\ =  S ih-MX^-N (3.42) 
\i = 1 i = 1 )       i=\ 

When the eigenvalues of the matrix product are positive the argument of the summa- 

tion Xt - In (A,,) is always greater than one requiring the sum to be greater than N. 

When the eigenvalues are all one then the metric is zero. This metric was developed 

from information theoretic principles and combines the trace and determinant func- 

tions. Relative information is used in [19] to compute sensor information gains. The 

development in [19] does not use a desired covariance, but rather tries to maximize the 

one step information gain. Without the use of a desired covariance, more sensing 

resources could be allocated to tracking a target then might otherwise be needed. 
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3.3 Rate and Resolution Analysis 

The covariance prediction in (3.9) and the information update in (3.10) are 

used individually to study how the sampling rate and sensor resolution contribute to 

the error covariance. These equations, with arbitrary sample times, are 

P-H^g = P-'C^.^ + CTR-'C (3.43) 

P('„+i|'„) = A(T)J>(tn\tn)At(T) + Q(T) (3.44) 

When the sensor measurements are uncorrelated, the information gain CTR_1 C has a 

block diagonal structure. The information gain can be represented as 

CTR^C = 

r    -IT 
C 

'M 

R71        0 

M/ M 

(3.45) 

where C, e 9?m<xN, Rr> e 9T''xm>:, and i € {1,..., M}. When all the sensors are 

used then C e %P 
X

 
N
 and Rl e 9t^ x P where p = J,^  mi. When we consider 

using different sensor combinations, the dimensions of the sensor information matrix 

R~' and measurement matrix C will change depending on which sensors are used 

and their associated dimensions. 

The information update in (3.43) increases monotonically with the addition of 

more sensors, i.e. p-1^^) > P"1 (*„!'„_ j) VC^R-1 C > 0. Figure 11aillustrates a 

set of monotonically increasing ellipses for information matrices in SR2 x 2. The sets 5,- 

have the properties 5, c ... c St c ... c SN and \S\ = i where |5f| denotes number 

of sensors in the /th set. The innermost ellipse in plot (a) of Figure 11 corresponds to 

the ellipse of the information update using only one sensor. Each successive ellipse 

proceeding outwards is a result of using one additional sensor. The outermost ellipse 

uses all six sensors. 
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Pft,+2.5|g 

Figure 11 Monotonically increasing ellipses with varying resolution and rate - (a) 
Ellipses representing matrices achieving higher resolution (smaller covariance) as the 
number of sensors increases, (b) Prediction error covariance ellipses as a function of 

the sample period 

The prediction covariance increases monotonically with the sample period if 

V(t +T7\t ) > P(f„ + 7\ \tn) VT2 > T,. This implies that the eigenvalues of 

Y{tn + T21 tn)-T(tn + TAtn)>0 are greater than or equal to zero. The initial update 

covariance is one factor that determines if the prediction covariance increases mono- 

tonicly. Figure 1 lb shows non-monotonicly "growing" ellipses where A(T),Q(T), 

and Y(t„\tn) are given by 

MT) = 1 T 
0 1 

,Q(T) = r3/3 T2/2 

T2/2    T 
<5lV{t\tn) = 4 2 

2 3 
(3.46) 

The 'innermost' ellipse of plot (b) corresponds to letting T = 0. Each successive 

ellipse proceeding outwards increases the sample period by 0.5. The 'outside' ellipse 
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of plot (b) corresponds to letting T = 2.5. 

Control over both the sampling rate (T ~l) and sensor resolution (CT^'C) pro- 

vides two methods for maintaining the desired covariance. The first method is to fix T 

and then solve for an optimal R"1 which represents the best subset of sensors to use 

from the available suite of sensors. The second method is to fix the sensor resolution 

CTi^C and then solve for an optimal T. These covariance control techniques are out- 

lined in the following two subsections. 

3.3.1 Steady State Covariance Control Using Sensor Resolution 

In a centralized, open loop covariance control scheme, where the rate is fixed, 

sets of sensors are chosen at each interval such that the steady state error covariance is 

made to be close in some sense to some desired covariance. During the transient 

period the error signals are nonstationary and the error convergence is completely 

determined by the Riccati equation associated with the Kaiman filter. 

Using this formulation we can find the theoretically optimal sensor set for 

maintaining the desired covariance given a fixed sampling rate. Using the Riccati 

equation in (3.15), it is possible to solve for the measurement covariance. We first 

choose a nominal sample period T, such that the state transition matrix A(7) and pro- 

cess noise covariance matrix Q(J) are held constant. If the full state vector is measured 

such that C = I, we can solve for an optimal measurement covariance R or sensor 

resolution R"1 corresponding to the desired covariance. Now let the steady state predic- 

tion error covariance equal the desired prediction error covariance 

P(«+l) = P(/i) = Y>dp. 

*dP = Q + AP^T.AP^C^R + CP^CTJ-ICP^AT 

AP^R + PrfP^PrfpAT = Q + AP,pAT-Prfp (3.47) 

(R + Prfp)-1 = (AP^Q + AP^AT-P^XAP,,)-* 
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Computing the inverse of the last equation in (3.47) we have the optimal covariance 

denoted by R0 

R0 = P^pA^Q + AP^T-P^AP^-P^ (3.48) 

The desired prediction covariance Vdp must be chosen such that R,, is positive definite. 

If the desired covariance results in an R,, that is not positive definite, then the sampling 

rate is not adequate for maintaining the desired prediction covariance matrix. When 

faster convergence of the covariance to steady-state is desired, then the sample rate 

may be increased so that faster convergence is achieved. Once the optimal measure- 

ment covariance is found, a search over all possible sensor combinations is performed 

to determine which set of sensors yields a combined R or R"1 that is "closest" (accord- 

ing to some metric) to R0 or R0
_1, respectively. 

When Ce 5R^ x N, p < N, the full state vector is not measured and we can not 

compute the required inverses to solve for R„. We can, however, use the pseudoinverse 

to get an estimate of the optimal measurement covariance matrix. Let M = AP^C1 

and Mf = (MTM)-1MT. Using the pseudoinverse, the optimal measurement covari- 

ance that gets us closest to the desired prediction covariance is 

R0 = (Mt(Q + AP^AT-P^MtT)-! -CPrfpC
T (3.49) 

The mapping in (3.49) is from Vdp e^xiVtoR0e ^P
X

P. This allows us to solve 

for p{(p + 1 )/2) parameters in R0 to maintain a desired covariance matrix Vdp with 

N(N+ l)/2 parameters. 

Given a fixed sample rate, the measurement resolution can be used to control 

the covariance. The above technique is an open loop covariance control scheme where 

a single sensor resolution is computed that drives the steady state covariance close to 

the desired. Figure 12 shows the convergence of the error variance for a scalar system. 
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Since we are only controlling the sensor resolution it is sufficient to only specify one 

desired variance. This desired variance could be treated as either a desired prediction 

variance or a desired update variance. In this simulation the desired variance is treated 

as a desired prediction variance which explains why the peaks of the sawtooth wave- 

form converge to the desired prediction variance. At T = 10s the desired variance is 

Variance convergence in discrete Riccati equation, with variable resolution 
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Figure 12 Variance convergence using variable resolution. 

increased to 4. The sample rate stays constant throughout the entire simulation. When 

the desired variance is increased, the optimal solution for the resolution decreases. The 

new sensor resolution is used and causes the prediction variance to converge to the 

desired prediction variance at steady state. 

3.3.2 Covariance Control Using Sample Period 

The state covariance matrix may also be controlled through choice of the sen- 
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sor sample period. In this method, we assume that a sensor measurement has provided 

a state covariance update. The optimal sample period is then determined by analyzing 

the difference between the desired and prediction covariance. This optimization can be 

performed on a per-sample basis to obtain the best covariance control or performed at 

a lower rate to reduce computational complexity, but would also reduce the sensor 

manager's ability to control the covariance. 

The prediction covariance is P(f„+1|^) = A(T)?(tn\tn)A
T(T) + Q(T) 

where matrices A(7) and Q(7) are functions of the sample period T = tn+l-tn. The 

difference between the desired covariance and the prediction error covariance is 

MN(T) = Pdp(t„)-V(tn + T\tn) 
1 (3.50) 

= Fdp(tn)-A(T)P(tn\tn)A^(T)-Q(T) 

where MN(T) e SRNx N and the goal is to determine Tsuch that MN(T) = 0 or is as 

"close" to zero as possible. One metric to consider is the minimum singular value. The 

characteristic equation of MN(T) is 

N N 

f(s) = det(sI-MN(T)) =   X bk(T)sk =  \[{s-Xk{T)) (3.51) 
/t=0 k=\ 

where the eigenvalues are all real because MN(T) is symmetric. Letting s = 0 we 

have b0(T) = Y[ "M^) •Tne roots °f *e polynomial ^(T) correspond to the val- 

ues of T that make the product of the eigenvalues equal to zero. The degree of the poly- 

nomial bQ(T) will depend on which model is used. For example, given an Mh order 

model with state vector composed of iV derivatives 

x('„) = \x(tn) x^(tn) ... x(N-V(tn)^   ,ihebQ(T) polynomial in the discretized- 

continuous model has degree N2. With the same state vector, the bQ(T) polynomial in 

the direct-discretized model has degree 2^\ =  /. 
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When the update covariance has the property ^dp(tn) > F(tJtn), we can 

always find a positive value for the sample period. Figure 13 provides a graphical 

argument of why there must exist a positive value of T. The inner-most ellipse repre- 

sents the update covariance and the dark solid ellipse represents the desired prediction 

covariance. Given Ydp(t„) > ?(tn\tn), as T -> «> the ellipse of Y(tn + T\tn) can 

either 

10 

P('„+4.4|0 

Figure 13 Two solutions for the sample period when the desired prediction covariance 
is greater than the update covariance 

always stay inside of P^(f„) or equal or exceed Tdp(tn). Since P(/„ + T\tn) increases 

without bound asT^«», then it must exceed P^0„) for some positive T. At 7=4.4 

seconds and 7=104.4 seconds, the prediction covariance ellipse is tangent to the 

desired ellipse. These values of Tare thus two positive roots of the polynomial b (T). 

The minimum positive root of b0(T) is the largest sample period Tfor which 
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V(tn + T\ tn) remains completely within the ellipse ofVdp(Q, in this.case 4.4 seconds. 

Given a fixed sensor resolution, the sample rate can be used to control the 

covariance. Figure 14 shows the convergence of the error variance for a scalar system. 

The same desired variances are used in this simulation as the one shown in Figure 12. 

This desired variance could be treated as either a desired prediction variance or a 

desired update variance. At T = 10s, the desired variance is increased to 4. The sen- 

sor resolution stays constant throughout the entire simulation. When the desired vari- 

ance is increased, the optimal solution for the sample rate decreases. The new sample 

Variance convergence in discrete Riccati equation, with variable rate 

o 

14 
CO > 
o 
CD 3 

Error Variance   Desired Sensor Rate: V0.88889 

Sensor Information: r =0.03125 

Desired Sensor Rate: T =0.23529 s 

Sensor Information: r"1=0.03125 

Desired Prediction Variance 

10 15 20 25 
time 

Figure 14 Variance convergence using variable rate 

rate is used and causes the prediction variance to converge to the desired prediction 

variance at steady state. 
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Here we develop rate optimization polynomials for 1st and 2nd order target 

models using both the discretized-continuous model and the direct-discrete model. 

The specific coefficients for 1st, 2nd, and 3rd order polynomials are given in Appendix 

A. Let the elements of the desired prediction covariance and update covariance be 

¥dp(t„)r = dtj  and F(tn\tn)   = ptj, respectively. With a first-order model track- 

ing target position in a single coordinate, the difference in (3.50) is simply 

Ml(T) = du-a2pn-Tc2 (3.52) 

Letting M{ (T) equal zero and solving for the optimal sample period we have 

T = (du-a2pu)/G2. This equation shows how the desired variance, update vari- 

ance, and white noise variance affect the solution of the sample period. When the 

desired variance is decreased, the sample period must also decrease. In a similar way, 

when the update variance is larger, the computed sample period will also be smaller. 

The direct-discretized model uses a different estimate of the covariance. The differ- 

ence in (3.50) is 

M,(D = du-a2pu-T2a2 (3.53) 

Solving for the sample period, we have T = lJ(dn -a2pn)/a2. The sample period 

for this model is just the square root ofthat computed using the discretized-continuous 

model. 

For a 2nd order model tracking a target's position and velocity, we have 

M2(T) 
du dn 

dl2 d22 

1 T 

0 1 
P\\ Pl2 

P\2 Pll 

1 0 
T 1 

r3/3 T2/2 
T2/2    T 

du-pn-2Tpl2-p22T
2-(Pc2)/3     dn-pl2-p22T-(T2o2)/2 

*\i -Pn -p21T-{T2*2)/2 d22 -p22 - Ta2 
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as a function of the sample period. The characteristic equation is 

f(s) = det(sl-M2(T)) 

= b2(T)s2 + b1(T)s + bQ(T) = (s-Xl(T))(s-X2(T)) 

where the polynomial coefficients in T are 

e3 = o?/3 
e2 = Pll 

ex = 2pn + c2 

e
0 = P\\+Pl2-d\\-d22 

and the coefficients of bQ(T) are 

(3.54) 

W1 

^(J) = e3P + e2T
2 + e^ + e0 (3.55) 

V7^ = c47,4 + c37
,3 + c2r

2 + c17
, + c0 

The coefficients of bAT) are 

(3.56) 

ov 

c4 = a«/12 

c3 = <*c(P22-d22)/3 

c2 = (Pl2 + d\2)Cc~d22P22 (3-57) 

cl  =  (/>11 -dlOac+ 2(dnP22 ~P\2d22) 
c0 = -dh+dUd22~d22Pn+2dl2Pl2~P22~dnP22+PuP22 

and the eigenvalues of M2(T) are A,j (T) and A,2(r). To find when the minimum 

eigenvalue equals zero we let 5 = 0, so that the characteristic polynomial is just the 

product of the eigenvalues f(0) = det(-M2(T)) = b0(T) = Xl(tT)X2(T).Tbe 

smallest positive root of b0(T) will be the shortest sample period that minimizes the 

minimum singular value of M2(T). Explicit expression for the eigenvalues of M2(T) 
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are given by the quadratic formula 

, ,r, _ -bx{T) + Jb\{T)-Ab6T) 
Mij ö  

, ,-, _ -bx{T)-Jb\{T)-AbQ{T) 
(3.58) 

From (3.58) the trace will equal zero when bx(T) = 0. When each eigenvalue of 

M2(r) is "close" i.e. XX(T) = X2(T), then a large trace will indicate poor covariance 

control and a small trace will indicate good covariance control. However, when the 

eigenvalues of M2(T) are "close" to negatives of one another i.e. A,j (T) = -"k2(T), 

then the trace could remain small as the magnitudes of 'kl (T) and X2(T) grow, giving 

a false impression of good covariance control. 

Experimentally we observed that the matrix MN(T) would usually have JVreal 

roots, where each root corresponds to the value of T that makes each eigenvalue equal 

zero. A subject of further study is to find the conditions on A(7), Q(7), ¥{tn\tn), and 

¥d that make MN(T) have exactly TV real roots. 

The desired prediction covariance matrix acts as a threshold. If the sample 

period T, is chosen from the continuous set T e [Tmin, °°), then when the desired 

covariance is reduced, the sample rate increases; and when the desired covariance is 

increased, the sample rate is decreased. However, if the sample period T, is chosen 

from a discrete set T e n Tmin, n e {1,2,...}, then for some small changes in the 

desired covariance, the sample period may not change due to the thresholds imposed 

on the selection of sample period. 
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3.4 Sensor Delay 
The sensor scheduler and specific sensors can cause various effects on the sen- 

sor commands concerning rate and resolution. The first effect is sensor delay. There 

are two types of sensor delay. The first type of delay is measurement delay. This hap- 

pens when a sensor either executes or obtains a measurement but the controlling node 

does not receive the measured data until some later time. This causes the measurement 

to be delayed in time. The other type of delay happens when a sensor scheduler 

obtains a sensor request at time t0 but does not execute this request until a later time 

t, >t . 
1       o 

Figure 15 shows four sensor time lines each having different delay properties. 

Each sensor has the same sample rate and each sensor receives measurements at the 

same times. The pluses (+) on each sensor time line indicate when the sensor manager 

requests a measurement, the dots (•) indicate when the measurement execution starts, 

and the circles (o) indicate when the measurements are received. 

S4 

S3 
o 
CO 

CD 
CO 

S2 

S1 

-»' 1            I 
,..,  ,         1 

+       request 
•       execute 
o       recieve 

■-•0-- 

1 1             1 

8 10 12 14 16 
time, t 

18 

Figure 15 Illustration of measurement delay and sensor request delay 
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The first sensor S1 has no measurement or sensor request delay. The second sensor S2 

has measurement delay but no sensor request delay. The third sensor S3 has no mea- 

surement delay but has a sensor request delay. The fourth sensor S4 has both measure- 

ment delay and sensor request delay. 

These two types of delay must be considered when designing a sensor man- 

ager. When these delays are known a priori they may be taken into account in the sen- 

sor manager by requesting sensing resources at an earlier time. 

3.5 Sensor Dropout 

The second type of adverse effects is sensor dropout. Sensor dropout is 

described by an extended loss of sensing resources due to sensor reallocation or sensor 

failure. This can cause degradation in the ability to maintain a desired estimation per- 

formance. The general idea is that when we lose the ability to use a sensor, the rate of 

the remaining sensors must increase in order to compensate for the reduction in sensor 

information. A simple illustration can be made using a scalar state equation and vector 

measurements. The state and measurement equations are 

x(tn+l) = ax(tn) + bw(tn) (3.59) 

y{tn) = Cx(tn) + Dv(tn) (3.60) 

with a, b>0,C = [i _ i]T,andD = diag\\d\'2 ... d\'2 ) • This is a single 

state estimation problem using multiple sensors, where the measurements are con- 

tained in the vector y(tn). The noise terms, w(t„) and v(tj have the following probabil- 

ity densities 

w(tn)~N(0,To2),b = 1 

q = E[w(tn)w(tn)] = Ta2 

v(tn)~N(0,I) 

R = E[Dv(^)(Dv(/„))T] = D»Tp25(tn-tm) 
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Using (3.15) with the above coefficients we have 

a2 

^'''■'%-'(^-,)+cW (3-61) 

Let the quadratic form in the denominator of (3.61) be — = CTR-1 C = — + ... + —. 
4 re d\ dn 

This equation is similar to the "resistors in parallel" equation. Notice that the effective 

measurement variance re increases as sensors dropout. The total information r~l(tn) 

decreases when sensors are removed. Letting p(tn + {| tn) = p{tn| tn _ x) = pdp, and 

solving for a desired q in (3.61) we get 

a2 
a = p -Ji—  (3.62) 
q     Pdp   PlX

P^-\tn) 

With a given sensor combination, we can compute a sensor sample rate that will 

achieve the desired variance goal. Using q = Ta2 in (3.62) the sample rate is 

l+Pdpr?(tn)-<>2 
T-Ktn) =       ^ap,;in'\ (3.63) 

Notice that the process noise variance is linearly related to the sample rate. We now 

give an example showing how increasing the measurement rate can compensate for 

sensor dropout to maintain a desired variance goal. 

Example: 

The system coefficients, the noise variances, and desired prediction variance is 

a= 1,6= l,C«[i um l]T,4 = 0.1 
L J (3.64) 

a2 = 4,p2 = \,pdp = 5 

where / e {1,..., 7} indexes seven different sensors having equal measurement vari- 

ances. Using these coefficients the simulation removes one sensor at each 20th sample. 

Figure 16a and Figure 16b show what happens to the resolution and rate, respectively, 

when each sensor drops out. The effective sensor resolution decreases linearly because 
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each sensor has the same variance. 
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Figure 16c shows the desired prediction variance, the prediction variance, and the 

update variance. Once the prediction variance has converged to the desired prediction 

variance it is maintained there by adjusting the sensor rate of the remaining set of sen- 

sors. This gives a technique for controlling the variance when sensors dropout. This 

concludes the delay and dropout analysis. 

3.6 Scalar Riccati Difference Equation 

We now review a solution to the scalar Riccati difference equation. The general 

solution technique is to change the 1st order nonlinear difference equation into a 2nd 

order linear difference equation. This technique is promising since we have methods of 

solving linear difference equations this technique is promising. 

A discrete Riccati equation can be defined for both the covariance prediction 

recursion and the update covariance recursion. Using (3.9) and (3.10), we can write the 

prediction and update variances as a.recursive "bilinear" transform. Rewriting the pre- 

diction covariance from (3.15) in scalar form we have 

,     , , 2 , .     ,  «WC,|'.-i-) 
C2P{tn\tn-\) + r 

r + c2p(tn\tn_0 

(ah + c^pitJt^J + rq 

(3.65) 

cV(>„|'„-i) + r 

This nonlinear difference equation is called a bilinear transformation because it is lin- 

ear in the numerator and denominator. Other names for the bilinear transformation are 

Möbius transformation, or linear fractional transformation [1]. 

The information update monotonically increases and thus the update covari- 

ance will always be smaller than the prediction covariance. The update variance recur- 
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sion in (3.16) takes a similar form 

p(tn+\\tn+i) = {p{tn+x\tn)-
x + c^y 

P^n+xVn+l) = 

P^n+xVn+l) 

^2PUn\tn) + q)-'+c^ (366) 

a2rP<<tn\tn) + r(l 
a2c2p{tn\tn) + qc2 + r 

The update covariance can always be related to the prediction variance through the 

equation p(tn+l\t„) = a2p{tn \tn) + q. Notice that (3.65) and (3.66) have the same 

general form but different coefficients. 

Consider the Riccati difference equation with coefficients 

e(n), f{n), g(n), h{n) e 9*, where in general these could be time varying sequences. 

g{n)p{n) + h{n) v       ' 

This equation is in the form of a recursive bilinear transform. Equation (3.67) can be 

converted into a 2nd order linear difference equation by making the substitution [9] 

m - i^Liii _ m = "<"+■)-»(»(■) (368) 
g(n)u(n)    g{n) g(n)u(n) v      ' 

into equation (3.67), with initial conditions w(0) = 1, u( 1) = g(0)p(0) + h(0), and 

u{m) = 0, V/w < 0. With this substitution we get 

e(n)u(n+l)-e(n)u(n)h(n)     . 
u(n + 2)-u(n+l)h(n+l) = g(n)u(n) J_^_ 

 M(W) ' + *(") (3-69) 

= e(n)u(n+l)-e(n)u(n)h(n)+g(n)f(n)u(n) 
g(n)u(n+ 1) 

Canceling the u(n + 1) terms in the denominator and multiplying by g(n + 1) gives 
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us 

u(n + 2)-u(n + l)h(n+l) 

= e(n)g(n + 1 )u(n + 1) - e(n)u(n)h(n)g(n + 1) + g(»)g(« + 1 )f{n)u{n)   (3.70) 
*00 

(3.71) 

u(n + 2) m ^n)g(n+l)^(n+l)g(n)yn + l) + 

af(n)z(n)-e(n)h(n))g(n+l)\i(n) 

With constant coefficients (3.71) reduces to 

u(n + 2) = (e + h)u(n+l) + (fg-eh)u(n) + 8n + 2 + (gp(0)-e)8n+l      (3.72) 

where n = -2, -1,... and the Kronecker delta functions have been included to 

account for the initial conditions on u(n) and p(n). The solution to this second-order 

linear difference equation can be found by using Z-transform techniques. Taking the Z- 

transform and solving for U{z)/z we get 

z2U(z)-z(e + h)U(z)-(fg-eh)U(z) = z2 + (gp(0) - e)z (3.73) 

U(z) =        z + (gp(0)-e)        = z + (gp(0)-e) =    *i   +   R2 
z        z2 - (e + h)z - (fg - eh)      {z-Xx){z-X2)     z-Xl    z-X2 

R, R2 

(3.74) 

1-A.jZ-1    \-X2z~x 

where the residues in the partial fraction expansion are 

^i+gp(0)-e      _-(X2 + gp(0)-e) 

1 —    2 1 —    2 
R\ =       i      i        > R2 =       \      \  (3-75) 

Using the coefficients a, c, q, and /-from either (3.65) or (3.66) it can be shown that 

the roots of the characteristic equation from (3.74) z2 - (e + h)z - {fg -eh) = 0 are 

strictly positive. Thus, we can assume without loss of generality, that Xl > X2 > 0. The 

solution of (3.74) is then u(n) = ÄjXf + R2X%. Substituting this result into (3.68) we 
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get 

, ^      RxX
n

x
+x+R2X$+x-hRxX>{-hR2Xl 

p(n) = —- _ £_± 
gR1X? + gR2X$ 

= RlX"(Xl-h) + R2X2(^2-h) 

gR^ + gR2X^ 

R^-h^J + R^-h) 
(3.76) 

\x2)   *"2 

(3.77) 

The steady state variance is pf =  lim p(n) = (X,- h)/g. The first term in the 
71-»°° 

numerator of the final expression in (3.76) can be factored into gRxpfan where 

a = Xx/X2, and the second term in the numerator may be factored into 

gR2Pf + R2(.^2-^i).Tbmt 

p{n) = gRiPfan + (gR2Pf + R2&2-h)) 
gRxa

n + gR2 

= Pf(gRi^n + gR2) 
+ R2(

X2-h) 
gRla" + gR2 

_      + -^2(^2-^1) 
f   gRxa"+gR2 

The second term in the last equation of (3.77) goes to zero as n -> 00, and the variance 

converges to the steady state variance pf.Tbe ratio of the poles, a, will determine 

how fast the variance sequence p(n) will converge. The parameters (a, q, c, r) from 

(3.65) determine a and pf. 

3.7 Matrix Riccati Difference Equation 

Since most tracking applications involve forming estimates of more than one 

state (positions, velocities, and accelerations), there is motivation for the development 
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of closed form solutions to the discrete matrix Riccati equation (DMRE). This solution 

allows for fast computation of the steady state covariance. As with the scalar Riccati 

equation, a DMRE can be defined for the prediction or update covariances using (3.9) 

and (3.10). 

The Nth order DMRE in (3.15) can be changed into a 2Nth order linear homo- 

geneous matrix difference equation together with a nonlinear equation [12]. Consider 

the linear and nonlinear matrix difference equations 

(3.78) 

Y(n + 1) = MY(JI) 

U(»+l) I 0 A-T 0 I CTIHC U(n) 
_V(«+1)_ LQiJ 0   A 0       I [y(")J 

P(/i+l) = V(« + l)U-'(«+l) 

respectively, where Y(n) = U(n) 

\(n\ 
andM = I 0 

Ql 

A"T 0 

0   A 

I CTR-'C 

0       I 

(3.79) 

with ini- 

tial conditions U(0) = I and V(0) = P(0). These two equations together form a 

recursive "bilinear" transformation. 

This system of equations will be shown to be equivalent to (3.15). Simplifying 

the matrix M in (3.78), and letting U(n) = I and V(n) = P(w) we have 

U(/i+l) 
V(«+l)_ 

A-T       A-TCTR-'C 

QA-TQA-TCTR'C + A 

I 
P(«)_ 

(3.80) 

Let each subblock of this matrix be E = A~T, F = QA~T, G = A^CTR-'C, and 

H = QA~TCTR_1C + A so that we can express the matrix in (3.80) as 

M = E G 

F H 
(3.81) 

The recursive bilinear transformation is P(n + 1) = (HP(n) + F)(GP(«) + E)_1, 
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where we see that each matrix factor is affine in P(«). When the initial covariance is 

invertible i.e det(T(n)) * 0 then U(n + 1) is 

U(«+l) = GP(«) + E 

= (A-TCTR-1CP(«) + A-T) (3.82) 

= A-TCCTR-'C + P-^II^PCII) 

Grouping matrices as indicated by the parenthesis in (3.83), we can express 

U_1 (n + 1) using the Matrix Inversion Lemma. 

lH(/i+l) = [(A-TCT)R-i(CP(«)) + A-Tr1 

= AT-CT(R + C?(n)CT)-lC¥(n)AT 

Solving for V(« + 1) we have 

(3.83) 

V(/i+l) = HP(n) + F 

= ((QA-TCTR-1C + A)P(n) + QA-T) 

= AP(») + QA-TCTR-» CP(«) + QA-T (3.84) 

= AP(«) + QA-T(CTR-»C + P-i(if))P(») 

= A?(n) + Q\J(n) 

Finally, using (3.83) together with (3.84) to compute P(/i + 1) = V(n + 1 )U~I (n + 1) 

we get 

P(/i+l) = V(n + l)V-l(n+l) 

= (AP(n) + QU(n))V-l(n) 

= AP(«)U-!(«) + Q (3'85) 

= Q+AP^AT-AP^JC^R + CP^CT^CP^A
1

" 

which is the DMRE as given in (3.15). Since (3.78) is a linear homogeneous difference 

equation, the solution can be found for any arbitrary time step. 

Using the above solution, the steady state solution is easily obtained. The 

matrices in (3.78) are Symplectic matrices. Symplectic matrices have the property that 

MTJM = J [10], where J = 0  I 

-I 0 
and det(M) = 1. The eigenvalues of Sym- 
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plectic matrices come in reciprocal pairs, i.e. with proper ordering 

X{(M) = ^(M-1). These properties and others are developed in Appendix B. The 

solution to the linear difference equation in (3.78) is simply 

Y(#i) = M"Y(0) (3.86) 

Since M e Qf{2Nx2N ^ fl^g wm aiWays be an even number of eigenvalues. For sim- 

plicity in this review of the solution to the DMRE, consider M having distinct eigen- 

values. Expanding M using an eigendecomposition produces 

MB = (TDT-1)" = TD"!"1 (3.87) 

Constructing the eigendecomposition so that the first JV eigenvalues are inside the unit 

circle, the partitioned eigenvalue and eigenvector matrices have the form 

D - 
Ü!     0 

0   DT
1 

,T = 
T,T2 

T3T4 

(3.88) 

where |D j I.. < 1. Another property of symplectic matrices is that there always exists a 

symplectic basis that takes M into a canonical form [10]. The specific canonical form 

depends on the multiplicity of the eigenvalues. When the eigenvalues are distinct, the 

canonical form is the diagonal matrix in (3.88). When the eigenvectors form a sym- 

plectic basis [10], then the matrix T in the eigendecomposition is a symplectic matrix. 

The inverse is T_1 = -JTTJ and can be represented in terms of the matrix blocks 

contained in T 

T-i = -JTTJ = 
Tj -Tj 

-T3
T Tj 

(3.89) 

Using (3.88) and (3.89), we obtain a closed form solution for the state covariance as a 
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Y(«) = 'U(n) T, T2" Df   0 TJ -TJ I 
Y(n)\ T3 T4 0  Djn -TJ TJ Lp( 
T,DfTj-T2D7"Tj    -T1DfTj + T2D7"Tf 

T3DfTj-T4Dr"T3
T    -T3DfTj + T4Dr«TT 

(3.90) 

P(n) = V(n)V-l(n) 

= ((T3DfTj-T4Dr«Tj) + (T4Dr«TT-T3DfTj)P0) (3.91) 

((T^fTj-TjDfTj) + (T2Dr»TTlTlD?Tj)P0)-' 

The solution in (3.91) provides an easy way of solving for the steady state covariance, 

Py. Note that at steady state lim Df = 0 . Making this substitution, (3.91) becomes 
n —»°o 

P(«) = (T4Dr»TTp0-T4Dr«Tj)(T2Dr"TTp0-T2Dr"T3T)-i 

= (T4Dr«(TTp0 - Tj))(T2Dr"(TTp0 - TJ))-» 

T4Dr«(TTp0 - T3
T)(TTp0 - Tj)-'Df T2' 

(3.92) 

provided det{T2) * 0. The parameters (A, Q, C, R) from the DMRE determine the 

eigenvalues in D and the steady-state covariance Vf. Ideally we would like each 

eigenvalue of Dj to be small (so that we would have fast convergence of the covari- 

ance), and Py to converge to the desired prediction covariance, Fd . 

When we consider managing sensing resources the parameters A and Q are 

functions of the sample rate and C and R are functions of the choice of sensors. When 

either the sample rate or sensor resolution change, the eigenvalues in D and the steady 

state covariance Py will also change. 



Chapter 4 

DECENTRALIZED SENSOR MANAGEMENT 

4.1 Decentralized Kaiman Filter 

The choice of decentralized estimation algorithm will help determine the 

development of the decentralized sensor management algorithms. The DKF is used as 

the basis for the decentralized system designs described below. This algorithm is used 

for implementing state estimation among multiple processors in distributed networks. 

The DKF algorithm developed in [18] is fully distributed in the sense that it does not 

rely on any central clock, communication, or processing infrastructure. Within a cer- 

tain set of assumptions, the DKF is mathematically equivalent to a centralized Kaiman 

filter where all measurements are received at one node. 

As mentioned in the introduction, decentralized sensing networks have a num- 

ber of advantages over centralized sensing networks that have the same sensing 

resources. The most important advantage is survivability. When one node or sensor 

fails, the entire network can continue to function by reallocating sensing and process- 

ing load to the remaining nodes. A second advantage is reduced computational com- 

plexity on a per-processor basis. Another advantage is that each node can share the 

sensing load. 

Networks can be either static or dynamic. A static network is one in which the 

connectivity between nodes does not change, while a dynamic network is one in which 
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the connectivity between nodes can change with time. Some networks are inherently 

dynamic such as in cellular communications. 

Communications channels can be classified as simplex, half duplex, or full 

duplex. A simplex channel allows information to travel only one way. A duplex chan- 

nel allows information to travel in both directions. Half duplex means information 

only travels one way at a time (such as in CB radios) and full duplex allows two way 

simultaneous information transmission. In our models, we assume a full duplex trans- 

mission. The communication load on a per processor basis is defined as the maximum 

number of full duplex channels required by a single processor. The total communica- 

tion load is defined as the total number of channels that exist. 

The network that has been used in this research is a dynamic clique network. 

Figure 17 is a model of a full duplex dynamic clique communications network with M 

processors. This network has a communication load of M-l channels per processor 

where M is the number of processors. This model is a general network that can be used 

to model any type of centralized, hierarchical, or decentralized network by removing 

communication links between processing nodes. 

Figure 17 Dynamic clique network 
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When information is broadcast from one node to the other nodes, the state and 

covariance information must be transformed into the state space of the receiving 

nodes. These transformations are modeled in Figure 17 as Ty, where / is the transmit- 

ting node andy is the receiving node. The internodal transformations are required 

because sensors can be located at different points in space and have different look 

angles [4]. Let T„ e {C} with Ca space of suitable internodal transformations (con- 

sisting of rotations and translations). In order to focus better on the problem of sensor 

management, the model we use assumes T{j = I, V/, j. This implies that all nodes 

have the same state space. The three main assumptions are 

1. Clique network 

2. All nodes have the same (global) state space 

3. Zero delay communication 

The first assumption ensures that each node receives full information of the target 

state. Assumption 2 ensures that each node has a common state representation so that 

received information is of the same form. The third assumption insures that each node 

receives present information. The last assumption can be relaxed to the extent that the 

communication delays are less than the sample period during a particular interval. 

We now review the DKF [18]. The first step is to define the state and measure- 

ment equations for each node in the system. Each node in the clique then has the fol- 

lowing state and measurement equations 

*('„+ l)  = HOxHn) + *i(tn)™M (4.1) 

yi(tn) = Ci{tn)x{tn) + Y)i{tn)vi{tn) (4.2) 

where x{tn) e <R"X \ yt(tn) e 9T'X', *>,.(/„) e W*l, and vt(t„) € 9tm'x l. The 

dimensions on these vectors require the system matrices to have dimensions 

At(t„) <=XNxN, B.(/„) eVtNxN, Ct(tn) e 9?m<xiV, and D,.(;„) e 9tm-xm<. Although 
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the state equation coefficients in (4.1) have been indexed with / for each node, they are 

assumed to be the same across all processors following from the assumption of each 

node having the same state space. With these definitions, each node makes estimates 

based strictly on its own measurements and then assimilates the measurements from 

other processors. The prediction and update equations based on local measurements 

are similar to the centralized equations. 

Prediction Equations: 

*i('«|'«-i) = A('Ä'„-i|'„-i) (4-3) 

hi'nl'n-l) = C/('„)*/('„|'"-l) <4-4) 

Update Equations: 

*7l(tH\tH)  =  iTHtnpn-O + CjitJXTHtniCM (4.6) 

Ki(tH) = h(tn\tn)Cj(tn)Rf(tn) (4.7) 

X^nVn)  = ^(^„-O + ^iOiyM-yii^n-O) (4-8) 

where the tilde (~) denotes partial estimates based strictly on new local observations 

and old data from other nodes. The local state updates at each node may be expressed 

as 

' (4.9) 
+ Vi(tn\tn)Cf(tn)RTHtn)yi(t„) 

where this form illustrates that the new state update combines the old state update with 

the new local measurement. Once each node goes through a measurement cycle, each 

node then broadcasts the state estimates and covariance matrices. 
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4.1.1 Assimilation of Variance 

The centralized measurement covariance has a block diagonal structure, 

R= blockdiag[R. ... R J , because the measurement noise terms across each pro- 

cessor are assumed to be mutually uncorrelated. The centralized information update is 

and the decentralized covariance updates are 

(-4.10) 

fei'») = vfitn^.O + cJiOKfiOCM (4-11) 

In a fully connected (clique) network, each node has the same initial information 

i.e. P_1 (t„\t„   ,) = Pj"1 (t„ \t„   i). The block structure of the measurement matrix v n\ n— I* i   v n\ n—\' 

C(tn) and covariance matrix R(tn) allows us to relate the centralized sensor informa- 

tion matrix to the decentralized sensor information matrices by 

CHtn)R-^tn)C(tn) = 

IT 
*V(tH) o     o 

0      ...      0 

0       0 Rj}(tH) 

C,('„) 

(4.12) 

M 

=  XC/CORj'^C/O 
7=1 

There are two forms of the assimilation of variance. The first form is found by substi- 

tuting (4.12) into the centralized information update equation (4.10). 

M 

*Tl(t*\0 = ^Tl(tH\tl,.l)+JiCj(tH)RjHtH)CJitm) 
7=1 

(4.13a) 

where this is the assimilated information update computed locally at node i. Solving 

for the sensor information matrix, Cj(tn)Rr] (tn)Cj(tn), in (4.6) and substituting this 
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into the summation in (4.13a) we get a second form for the assimilation of variance. 

M 

*f(tn\tn) = Pr'C.I'.-iH X rj'CMO-P;1 ('„I'«.,) (4.i3b) 

Because we have developed (4.13a) and (4.13b) from the centralized Kaiman filter 

equations, the assimilation of variance equations are equivalent to the centralized 

information update given in (4.10). These two forms are mathematically identical, 

however, the two forms differ in what quantities are communicated and what process- 

ing is performed at the each node after the communication. 

4.1.2 Assimilation of State 

The details of the development of the assimilation of state can be found in [ 18]. 

Similar to the covariance update equations, there are also two mathematically equal 

state update equations. The first state update equation uses the measurements from 

each local node. 

( M \ 
^n\tn) = P/Cf.lO ^T{(tn\tn.x)xi{tn\tn_x)+ J,C](tn)RjHtn)yj(tn) (4.14a) 

The second state update equation uses the local state updates to form the global state 

update. 

( M \ 
(4.14b) 

These equations for the assimilation of state are not important for sensor management 

purposes since the state error covariance is of primary concern. We do, however, con- 

sider these equations in Section 4.1.3 to consider several different communication 

methods looking at communication and computational load. 
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4.1.3 Communication and Computation Load 

The choice of which DKF equations to use in a distributed system should be 

made partially in consideration of the following analysis of the different communica- 

tion methods. Using the assimilation equations of state and covariance, we define the 

following four methods, where the state vector is length N, the measurement vector at 

the /th node is length mi, and the nodes are indexed / e {1,..., M},. 

1. Method    I    uses    (4.13b)    and    (4.14b)    and    pre-computes 

^T\tn\tnyx.(tn\tn)-V7Htn\tn.O^(^n-0^^Nxl       before 
transmitting. 

2. Method II uses (4.13a) and (4.14a) and pre-computes 

C](t„)R]Htn)Cj(tn) e X
NxN and Cj(tn)RTHtn)yi(tn) e 3t"x i 

before transmitting. 

3. Method III uses (4.13b) and (4.14b) with no pre-transmission 

computation. The transmitted data for this method is the local information 

matrix Pf1^^) e <3iNxN, and the local estimate xt(tn\tn) e 9t^xl. 

All assimilation computations are performed at the receiving nodes. 

4. Method IV uses (4.13a) and (4.14a) with no pre-transmission 

computation. The data transmitted for this method is the measurement 

matrix Cz(*„) e 9?m,xAr, the sensor information matrix 

Rfl(tn)e9lm'xm'9 and the measurement vector y^tJeW'. All 

assimilation computations are performed at the receiving nodes. 

Table 1 shows the maximum transmission and reception loads for each of the four dif- 

ferent methods. The maximum load occurs when every node receives a measurement 

from its sensors and then immediately transmits the respective information to every 

other node. We developed Table 1 using the fact that symmetric matrices in *RNxN 

have (N2 + N)/2 different entries. Methods I, II, and III have maximum reception 

loads that are M- 1 times their respective transmission loads. Method IV has a differ- 
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ent maximum reception load for each node because it depends on the length of the 

other nodes' measurement vectors. Methods I, II, and III have the same transmission 

and reception loads. 

Table 1: Transmission and reception load at the /th node for different communication 
methods 

Method Maximum 
Transmission Load 

Maximum 
Reception Load 

I O[(JV2 + 3A0/2] 0[(M-l)((N2 + 3N)/2)] 

II 0[(N2 + 3N)/2] 0[(M-l)((N2 + 3N)/2)] 

III 0[(N2 + 3N)/2] 0[(M-l)((N2 + 3N)/2)] 

rv 0[(m? + 3mi)/2 + mjf\ <{I?.JPT=* + */% 

Table 2 and Table 3 present a comparison of the computational load for each 

communication scheme. When possible, multiplies and adds are considered as one 

floating point operation (flop); otherwise, an addition and a multiplication are consid- 

ered as separate operations. The computation is divided between pre-transmission 

computation and post-reception computation. Each method shows the computation 

involved with computing the state and covariance. Notice how in methods III and IV 

the pre-transmission computation is zero. These two methods allow for faster trans- 

mission of measurement data at the expense of increased post-reception computation. 

Method IV makes use of local computations given in (4.6) and (4.8) to reduce the 

computation given in (4.13a) and (4.14a). 
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Table 2: Pre-transmission computational load at the ith node for different 
communication methods 

Method 

Maximum Pre-Transmission 
Computation 

State Covariance 

I 0[2N2 + N] 0[(N2 + N)/2] 

II 0[mf + Nmt] 0[Nmf + N2;Nm] 

III O[0] O[0] 

IV O[0] O[0] 

Table 3: Post-reception computational load at the /th node for different 
communication methods 

Method 

Maximum Post-Reception 
Computation 

State Covariance 

I 0[MN + 2N2] 0[M(N2 + N)/2] 

II 0[MN + 2N2] 0[M(N2 + N)/2] 

III 0[2N2(M+l) + 2MN] 0[(M-l)(N2 + N)] 

IV 0 
r                                     M 

2N2 + MN+Y4mj + mjN 

7-'l 

0 
-j = 1                                                     -1 
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Method IV has the following advantages: 

1. When transmission of data is not received by other nodes due to 

channel disturbances, the pre-transmission computation is wasted 

at the local processors. Since there is no pre-transmission 

computation in method IV, computing resources can be used for 

some other tasks. 

2. Since there is zero pre-computational load in method IV, the entire 

assimilation process can be better optimized at each receiver yielding 

reduced computation over the other methods. For example, in method II, 

the multiplies and adds are computed at two different nodes. 

3. When measuring a subspace of the full state vector, mi < N. For.small 

mi, the transmission and reception load can be reduced considerably over 

that of the other methods. 

4. Having raw measurement data can help in various processes [2]. 

The disadvantage of using method IV is a higher computational demand. We now use 

Tables 1, 2, and 3 to illustrate the trade off between communication and computation. 

Example: 

There are seven processors (M=7), six states (N=6), and measurements of length two 

(mi = 2) at each node. Let S be the number of bits per symbol. Method IV has trans- 

mit and receive communication loads of 17 x S bits and 102 x S bits, respectively. In 

methods 1,11, and III the transmit and receive communication loads are 27 x S bits 

and 162 x S bits, respectively. Thus, when using method IV, the transmit communica- 

tion load savings is 10 x S bits and the receive communication load savings is 60 x S 

bits at each node, during each sample interval. 

The per-processor computational load (including all pre-transmission and post- 

reception computation) of method I, II, III, and IV is 360 flops, 343 flops, 912 flops, 
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and 835 flops, respectively. In general, methods I and II will have lower per processor 

computational loads than methods III and IV because a larger portion of the total 

computation is performed in parallel at each processor before transmission. This 

shows that for these parameters, method IV has the disadvantage of having increased 

computation over that of methods I and II. When the communication channels are 

very reliable, methods I and II are appealing because of the reduced total computa- 

tional load. 

4.2 Decentralized Covariance Control Approach 

The optimal solution for controlling the covariance in a decentralized network 

must consider all combinations of sensors and sampling rates across all nodes, but this 

combinatorial search is very computationaly expensive. A solution to this problem is 

to allow each node to make sensing decisions independently of the other nodes, how- 

ever, this makes it difficult to coordinate sensing efforts among the nodes. Communi- 

cation schemes where all nodes reach a consensus before performing sensing actions 

can restore that coordination. An example of this are schemes where each node "bids" 

for sensing actions based on its abilities and current sensing load. The drawback to 

these methods is that they add a rather high communication burden on what may 

already be a heavily loaded system. 

We have developed decentralized covariance control algorithms that avoid add- 

ing excessive communication overhead by only allowing one node to make sensing 

decisions at a time. Although this will usually not result in the optimal solution, these 

algorithms provide a coordinated sensing effort while maintaining a relatively high 

level of nodal autonomy. The systems presented here consist of a network of M proces- 

sors each controlling a suite of w,- sensors. All nodes are initialized to have the same 

desired covariance matrices. When one or more nodes request that the desired covari- 

ance should be changed, either all nodes change the desired covariances or none of the 
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nodes change the desired covariance. 

4.2.4 Ordered Nodes Algorithm 

The ordered nodes algorithm imposes a random ordering on the networked 

processors. This ordering determines the sensing order and when the last node in the 

order finishes a sensing task, the first node resumes the process by performing another 

sensing task. The time it takes to complete one cycle of each node using a sensor will 

be called the intranodal sample period. The time from one node receiving a measure- 

ment to the next node receiving its measurement will be called the internodal sample 

period. In steady state, when each node uses the same suite of sensors, the intranodal 

sample period will be constant across all nodes. The internodal sample period, how- 

ever, will be different because each node might have different sensors providing more 

or less information regarding the state. The sum of the internodal sample periods 

equals the intranodal sample period. The ordered nodes algorithm works as follows: 

Algorithm: Ordered Nodes 

Variables: i,je{l, ...,M}, Vdp(tn),J>du(t„), Tmin 

Start: 

I. A global random nodal ordering is selected for all nodes. 

II. The /th node acquires a target, providing the first measurements and measurement 

covariances to all remaining nodes. 

1. Computation of internodal sample period: Based on the update 

covariance Vt{tn\tn) at the /th node and ?dp(tn), the^th node 

(J = mod(i, M) + 1) computes the internodal sample period 

Tj{tn) and the associated inverse prediction covariance 

V]l(tn+Tj\tn). If Tj<Tmin then Tj = Tmin, where Tmin is the 

smallest internodal period allowable due to communication and 

sensor limitations. 
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2. Computation of sensor resolution: Node./ uses Yjl(t„ + Tj\tn), P^(^w), 

and the available suite of sensors to compute the optimal sensor set 00 

and the associated information update Py' (tn +1 \tn + Y). 

3. Measurement: When t =tn + Tj(tn), node j uses the optimal set of 

sensors O0. 

4. Communication: Communicate measurements and measurement 

covariances to all other nodes. Let / = j. 

5. Goto step 1 and repeat process. 

End. 

This algorithm provides good nodal autonomy at the expense of less efficient 

use of sensing resources. The only communication is the measurement data and the 

measurement covariance. In the Ordered Nodes Algorithm the sensing load for each 

node is reduced compared with one node doing all the sensing. By interleaving mea- 

surements from each node the intranodal sample rate is reduced by a factor of M. 

When the internodal sample periods T Atn) and the optimal sets of sensors 

O Atn) become periodic, the coefficients of the state and measurement equations also 

become periodic with a period equal to the intranodal sample period. We now give two 

examples showing how this algorithm works by choosing system parameters and 

showing some simulation results. 

Example 1: 

Three nodes track one target in a single coordinate. Figure 3.2a shows the sen- 

sor usage for the three nodes where nodes 1,2, and 3 have 2, 3, and 4 sensors 

respectively. This simulation used the following coefficients for the three nodes. 

A,. = 1, <*,(*„) = o2T(tn),ie {1,2,3} 

C,(ge *2xi, C2(ge Sfe*\C3{t„)e *4xl (4.15) 

R, = diag[\3,23], R2 = diag[6,22,42], R3 = diag[lO, 15,18, 35] 
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The measurement matrices at each node have elements that are 0 or 1, denoting 

whether or not each sensor is used. Taking all permutations gives us all possible mea- 

surement matrices: 
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(4.18) 

The size of each of these sets is 2m' where mt is the number of sensors at the z'th node. 

The sensor resolution is then determined by the quadratic form 

C7(tH)Rf%(tH) (4.19) 

The sensors at each node are ordered from smallest to largest variance. The minimum 

internodal period, Tmin, was set to Is. The internodal rate and sensor resolutions for 

all nodes are shown in plots (b) and (c), respectively. At sample n = 21, the desired 

update and prediction variances are increased which cause the sensor rate and resolu- 

tion to both decrease. The peaks in the sensor resolution are due to nodes using sensor 
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combinations that achieve the highest resolution during the respective time periods. 

Sensor usage for each node 
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Figure 18 Ordered Nodes Algorithm results: (a) nodal sensor usage, (b) internodal 
rate, and (c) sensor resolution (simulation 1) 

Each of these peaks in the resolution have a corresponding reduction in the computed 

internodal rate. For instance, when node 2 uses its 1st sensor at n = 5, the resolution 
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peaks and the rate (computed by node 3) decreases. These two plots illustrate the inter- 

play between rate and resolution in maintaining a desired variance. 

Figure 19 plots the error variance and the desired update and prediction vari- 

ances. The peaks and troughs of the sawtooth waveform correspond to the prediction 

and update variances, respectively. Between samples the error variance increases lin- 

early because a Wiener process is used to model the target motion. The slope of the 

line is determined by the white noise variance, c2. The error variance is plotted versus 

time, and illustrates how the sample period increases during the second part of the 

Variance convergence using Ordered Nodes Algorithm 
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Figure 19 Variance convergence in Ordered Nodes Algorithm (simulation 1). 

simulation. When each node sequentially uses the same sensor(s) and the same intern- 

odal rate, the steady-state error covariance can be modeled with a discrete periodic 
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Riccati equation (DPRE) [5]. The properties of the coefficients of a DPRE are 

A(r„) = A(tn + T) 

QCJ-QC. + r) 
C(tn) = C(tn + T) 

(4.20) 

where T = Y^   Tt(tn) is the intranodal sample period. With a scalar state the 

ordered nodes algorithm will always result in a DPRE because the prediction variance 

given by the o's in Figure 19 are always the same for computing the best sensor com- 

bination. 

Example 2: 

The second simulation using the ordered nodes algorithm uses three nodes each hav- 

ing three sensors. For each node, the sensors are ordered from "best" to "worst". The 

level curves of each sensor covariance is shown in Figure 20. After the 50th sample the 

elliptical annulus determined by the two desired information matrices is reduced. Each 
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node's sensor manager responds by reducing the rate and resolution. The maximum 

intemodal rate was specified to be 2Hz. Notice that during the first 50 samples each 

node uses all its available sensors. After the desired information is reduced, there is an 

Sensor usage for each node 

(3,3) 
(3,2) 

?(3.D 
| (2,3) 
«.(2,2) 

£(1,3) 

(1,2) 

0,1) 

A A A A A A A A A A A A A A A-A A AA A A A AAAA A A A A A A A 

A- A A A A A 

A A A A- A A 

A A AAAA AA A A     A A A A A A AAAA A A A A A A 

A A A A A A A A-A-A-    A ■ 

X  -X- X-X- X   -X-X- X   -X-X   -X-X- X-X-X-X--X- 

0.0.0.0.0.0.0. 

© O O- O O- O- O 
0. 0. Q. Q. Q. Q. 0: 

■XX- 

x-x -x-x- X-X- x-x-x-x -x-x-x:x- x-x-x — -x-x- 

-x- -x- x x -X-X x x-x -x- x x -x-:x- X-X- xx  

00 O 00 OO-0-O-OO 0 0 

0 0 0 0 0 000 00 0 0 0 

i 
0 0 0 0 0 0 0 0 0-00- 

node 1 
X- ■ X- • X- • X- ■ X• ■ X- • X- ■) • • X- ■ X-   X- 

node 2 
A      node 3 X--)-   X--X--X- 

I 

O 0 0 0 0 0 O: O O-0-0 O O 

0-0 o-ooo-ooo 0-0 oo 

 I  J_ 

20 40 60 80 100 
n 

Intemodal Rate 

Figure 21 Ordered Nodes Algorithm results: (a) nodal sensor usage, (b) intemodal 
rate, and (c) sensor resolution (simulation 2) 



88 

initial transient period after which the nodes always choose the same sensors. 

The metric used to find the best set of sensors to bring the update covariance 

"close" to the desired update covariance was the Frobenius norm. This metric was 

used along with checking the condition A.,(Pfl(tn\t„) - P^) > 0, which insured that 

the actual sensor information was greater than the desired. The subset of combinations 

of sensors that achieve this condition were considered and the one that achieved the 

smallest Frobenius norm was chosen. When no sensor combinations achieved the 

desired information, then the sensor set that minimized the Frobenius norm was cho- 

sen. 

The prediction covariance is allowed to grow until it is tangent to the desired 

prediction covariance. The determinant is the function used to determine the optimal 

sample period that achieves making the ellipse of the prediction covariance tangent to 

the ellipse of the desired prediction covariance. 

Figure 22 shows the prediction and update covariances during each half of the 

simulation. The desired covariances are indicated by thick solid ellipses. Notice that 

during the first part of the simulation the update covariance is never inside the desired 

update covariance. Even though each node is using all its sensors the upper bound is 

not achieved. During the second half of the simulation, however, some update covari- 

ances are completely within the desired update covariance. 
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Covariance ellipses during 1st 50 samples 

*du(tn) 

>•    0- 

-10 

Covariance ellipses during 2nd 50 samples 
15h 

>   0 

-10 

Figure 22 Covariance convergence in Ordered Nodes Algorithm 

4.2.5 Extended Ordered Nodes Algorithm 

The extended ordered nodes algorithm also imposes a random ordering on the 

networked processors. This ordering determines the sensing order and when the last 

node in the order finishes a sensing task, the first node resumes the process by per- 

forming another sensing task. The extended ordered nodes algorithm works as fol- 

lows: 

Algorithm: Extended Ordered Nodes 

Variables: ije {1, ...,M},J>dp(t„), T>du{tn), Tt min 
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Start: 

I. A global random nodal ordering is selected for all nodes. 

II. The /th node acquires a target, providing the first measurements and measurement 

covariances for all remaining nodes. 

1. Computation of internodal sample period: Based on the update 

covariance ?,•(/„ I tn) at the /th node and the desired prediction covariance 

VdMn), the y'th node (j = mod{i, M) + 1) computes the internodal 

sample period Tj(tn) and the associated prediction information 

Pj1 (tn + Tj\tn). If Tj < Tmin then let Tj = Tmin. 

2. Search for sensor combinations: The y'th node uses Yjl(tn + TAtn), 

Pdl(t„), and O- to compute the optimal sensor set O ■ and 

¥]1(tn+1\tn+,).     The    yth    node    computes     Xmin(M)     where 

3. Intersample internodal communication: If Xmin(M)>0, then request 

additional sensing resources from the kth node (k = mod(j, M) + 1), 

communicate T.       C^R^C, TXt ), and let j = k. Goto step 2. If 

^m/«(M)<0'gctosteP4- 

4. Measurement: When / =tn + TAtn), then each node participating in the 

joint optimization samples using the optimal set(s) of sensors 4> •. 

5. Communication: Each node taking measurements communicates 

measurements and measurement covariances to all other nodes. 

6. Goto step 1 and repeat process at the next node in order. 

End. 

This algorithm provides improved covariance control. There are two communi- 

cation phases per internodal sample period, unless a node does not request additional 

sensing resources. The first communication period is for finding the optimal set of sen- 

sors. The second communication period is after each node has chosen what sensors to 

use and communicates the measurements and measurement covariances. 
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If an optimal search is performed between two nodes, this could cause one 

nodes sensing resources to not be used at all. Besides this problem there are several 

other problems associated with doing an optimal search in this algorithm. When a 

down stream node computes a new combination for previous nodes sensors, communi- 

cation would have to go in both directions after each additional node computes the 

next optimal combination of sensors. A suboptimal search that groups previous nodes' 

sensors would allow for a simplex transmission during the internodal intersample opti- 

mization. This grouping reduces the size of the internodal search, allows each node to 

control the use of its own suite of sensors, and requires each node to participate in the 

sensing process. 

In some tracking scenarios, better estimates are required in some directions 

than in other directions. For example, when locking onto a target to fire, a certain min- 

imum estimation error must be achieved before the weapon may be fired. In this situa- 

tion the estimates of the angles to the target may be more important than the range. 

Desired covariances can be chosen to simulate this type of requirement. 

The following example shows how the extended ordered nodes algorithm per- 

forms. For this simulation the desired covariance matrices were given disparate eigen- 

values and the desired update and desired prediction matrices are related by a positive 

scale factor. 

Example 3: 

Five nodes track one target in the x-v plane. Each node has three sensors. The 

desired covariances are decreased after the 25th sample. The minimum internodal 
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sample period is 0.5 seconds. After the 25th sample, the rate and resolution both 
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Figure 23 Extended Ordered Nodes Algorithm results: (a) nodal sensor usage, (b) 
internodal rate, and (c) sensor resolution 

increase in response to the increase in desired information. Notice also that internodal 

sampling occurs between different nodes. 

The next plot shows the desired covariances during the first half and second 

half of the simulation. The update and prediction covariances are also shown during 
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each part of the simulation. The desired covariance goals are treated as upper bounds 

on the update and prediction covariances. The determinant is used for computing the 

optimal rate and the Frobenius norm is used for computing the optimal resolutions. 

Covariance ellipses during 1 st 25 samples 

10 

5 

><   0 

-5 

-10 
-30 -20 -10 0 10 20 

Covariance ellipses during 2nd 25 samples 

30 

10 

5 

>   0 

-10 
-30 -20 -10 0 

x 
10 20 30 

Figure 24 Covariance control in the Extended Ordered Nodes algorithm. 

Notice how the update covariance matrices are always less than the desired update 

covariance matrices, i.e. P,( *„!*,,) < Vdu(t„). This illustrates how the extended 

ordered nodes algorithm is more flexible at achieving desired covariance goals. 

4.3 Periodic Riccati Difference Equation 

The ordered nodes algorithm in example 1 showed that for a single state the 

algorithm always results in a discrete periodic Riccati equation (DPRE). Experimen- 
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tally, using simulations of higher order systems, the ordered and extended ordered 

nodes algorithms appear to always result in a periodic sequence for the optimal rate 

and resolution. This seems to indicate that each algorithm may also result in a DPRE 

for higher order systems. To accurately compute the steady state performance of a Kai- 

man filter estimator whose rate and resolution is varying periodically in time requires 

solving the DPRE. 

Using an analysis similar to that reviewed for the constant coefficient DMRE, 

we here review a solution for the DPRE. This technique changes the Nth order period- 

ically time-varying nonlinear matrix difference equation into a 2Nth order constant 

coefficient linear matrix difference equation [5]. The time-varying Riccati equation is 

P(» + l) = Q(«) + A(«)P(«)A
T
(/J)- 

(4.21) 
A(«)P(n)CT(fl)(R(«) + C(n)P(/i)CT(«))-1C(Ai)P(«)AT(«) 

where the coefficients have the properties A(/i) = A(n + A), C(«) = C(n + A), 

Q(n) = Q(n + A), and R(«) = R(« + A) with A an integer. The periodic symplec- 

tic matrix is 

I    0 

Q(«) I 

A(n)-J    0 

0      A(/i) 

I CT(n)R(«)-'C(«) 

0 I 
M(») = 

Consider the periodic linear homogeneous matrix difference equation 

Y(»+l) = M(n)Y(«) 

where Y(n) = U(») 

l_v(«)J 

(4.22) 

(4.23) 

, P(/i) = V(«)U(/J)"
1
 and U(#i), V(n) e 9?^x^. This equa- 

tion can be changed into a time invariant equation as follows 

Y(n+1) = M(n)Y(n) 

Y(n + 2) = M(/i+l)Y(«+l) = M(/I + 1)M(«)Y(/I) 
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Y(/i + A) = M(/i + A-l)Y(» + A-l) = M(/I + A-1)...M(/I)Y(/I) 

This last equation can be written as Y(/n + 1) = M Y(m) where 

fl + A-l 

M =    17   M^') (4-24) 
i = n 

with M now time-invariant. Since each of the M(i) are symplectic, the product M is 

also symplectic (see Appendix B). With initial conditions U(0) = IandV(O) = P0, 

the solution of Y(m) and P(m) is Y(m) = MmY(0) and P(w) = \{n)\J{n)-x, 

respectively. This solution for the covariance is a down sampled version of the original 

covariance. The two covariance matrices P(/M) and P(/w) are related by 

P(m) = P(/nA + m0). This concludes the review of one solution of the DPRE. 



Chapter 5 

CONCLUSION 

Target tracking models were reviewed in chapter 2. The Kaiman filter was 

reviewed for both centralized networks and decentralized networks. Solutions to the 

scalar and matrix Riccati difference equations were researched and these solutions 

reviewed. Due to the development of several new distributed sensor management algo- 

rithms that resulted in periodic behavior of the system coefficients, we also researched 

and reviewed a solution to the discrete periodic Riccati equation (DPRE). While these 

solutions to the Riccati equations were not used in the sensor managers, an under- 

standing of the solution allows us to better predict the steady state performance of the 

Kaiman filter so that we can make better choices of the desired covariance. 

Using a covariance control approach we developed a novel sensor management 

scheme based upon the choice of two desired covariances. The desired prediction 

covariance was used to control the prediction covariance through the choice of sample 

rate. The desired update covariance was used for controlling the update covariance 

through the choice of sensor combinations. Analysis of different functions were given 

for measuring the "distance" between two positive definite covariance matrices. Two 

new metrics were developed based upon using the singular value decomposition 

(SVD) of the desired covariance matrix and the prediction or update covariance 

matrix. These covariance control techniques were used to develop two algorithms for 
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distributed sensor management. Analysis of these algorithms was done by evaluating a 

number of examples, three of which were presented in detail in this thesis. These 

examples illustrated the techniques and how the algorithms performed. 

Future work consists of applying the above sensor management techniques to 

multitarget tracking scenarios. This may require development of new metrics due to 

the additional issues involved with tracking multiple targets. Some of these issues are 

1) better description of sensors in terms of agile and non-agile sensing resources and 

sensor capabilities, 2) crossing or interacting targets and a desire to keep them sepa- 

rated, and 3) addressing cluttered measurements in the development of better filtering 

algorithms and its consequent effects on the sensor manger. 
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Appendix A 

Rate Optimization Polynomials 

The desired prediction covariance, P^p('n) >sod me prediction covariance, 

¥{tn\tn_,), are used to develop polynomials for computing the optimum sample 

period. The prediction covariance is 

P('„|'„-i) = A(DP(rJ,_1|rJ,_1)A(DT + Q(D (A.1) 

The difference between these two matrices is expressed as 

MN(T) = Fdp(tn)-V(tn\tn_l) (A.2) 

where MN(T) <=$iNxN. The characteristic equation for M^r) is 

N 

f(s) = det(sl-MN(T)) =  ]T a,(7V (A.3) 
« = 0 

where each of the coefficients are functions of the sample period T. Using the coeffi- 

cients of the characteristic equation we can develop metrics based upon the determi- 

nant and the trace. 

The following sections in this appendix develop the polynomial coefficients of 

f(s) for different models. We specifically look at the discretized continuous models 

and the direct discrete models for different length state vectors. Let each element of 
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the desired prediction covariance be ?jp(tn).. = dy and the update covariance be 

1.1 Discretized Continuous Model 

First Order: 

The first order model has the form 

M,(D = dn-a2pu-Tc2 

The optimal sample period for this Wiener process is 

(A.4) 

T = 
du-a2pu 

(A.5) 

This model would describe a white noise velocity model making the position a Wiener 

process. 

Second Order: 

The second order model has the form 

M2(D = 
du dn 

dn d22_ 
- 1 T 

0 1_ 
Pn P\2 

P\2 Pl2_ 

1 0 

T 1_ 
- r3/3 T2/2 

T2/2    T 
(A.6) 

The characteristic equation for the above matrix has polynomial coefficients that are a 

function of the sample period. 

f(s) = det(sI-M2(T)) = a2(T)s2 + ax{T)s + aQ{T) 

a2{T) = 1 

ax{T) = b3T
z + b2T

2 + bxT + bQ 

aQ(T) = c4T
4 + c2T

3 + c7T
2 + c,T + cn 

(A.7) 

(A.8) 



The coefficients of the third order polynomial a, (T) are 
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h -1-2 

b2 = p22 

bx = 2/712+ 02 

b0 = P\\+Pl2~d\\-d22 

The coefficients of the fourth order polynomial a0(T) are 

(A.9a) 

c    =  —O4 
C4      12G 

c3 =  ^Pll^-^ll^2 

(A.9b) 
C2 = dn<52+pnG2 -P22d22 

cx = 2dl2p22-2pnd22+pua2-duG2 

c0 = dnd22-p
2

2-d2
2+2dl2pn-pnd22-dup22+pup22 

This model describes a white noise acceleration model also called a Wiener process 

velocity model. 

Third Order: 

The third order model has the form 

dn dn dl3 1 T T2/2 

"12 ^22 "23 — 0 1     T 
dl3 d23 d33 0 0     1  J 

M3(T) = 

T5/20 T4/8 T3/6 

T4/8 T3/3 T2/2 

T3/6   T2/2      T 

The characteristic equation is a third order polynomial in s 

Pu P12P13 1       0 0 

P\2 P22 P23 T    1 0 

P\3 P23 P33 T2/2 T 1_ 
(A.10) 

f(s) = det(sl-M3(T)) = m3{T)sl + m2{T)s2 + mx{T)s + mQ{T)       (A.ll) 
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m3(T) = 1 

m2(T) - -E?-o*i** 
«,(D = -2-oV 
m0(T) ■■ = r=o^ 

The coefficients of the 5th order polynomial m2(T) are 

a5 = = c
2/20 

a4 = : ^33/4 

a3 = Pli + G2/3 

a2 - pv ,+^22+^33 

ax = 2pu + 2p23 + c2 

45°      120' 

(A.12) 

(A. 13a) 

(A. 13b) 

(A. 13c) 

(A. 13d) 

(A.13e) 

ao = P\\ +Pi2+P^-du -d22~d23 (A.13f) 

the coefficients of the 8th order polynomial m j (T) are 

bs = c4/960 (A. 14a) 

*7 = P33<52/120 (A.14b) 

*6 = Z*a4 + 7^23°2 (A.14c) 

*5 = o2^13-a2^(C?22 + ^33) + Cf2^(^22+JP33) (A.14d) 

64 =  n^ + iP23a2+n/,,2°2 + i(</l202+/'33(/,22"W/22"rf33)-^)      (A"14e) 

^3  = P\2P33-P22d22 -P23d33 + d\2P 33~ P\3P 23 + 
1. (A.14f) 
-G2(/>11+3/P22 + rf13-rf33+jP33+2/713-</1]) 
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b2 = 3d12p23-p^3 -p22ä22+ P12P23-Pnd33-PnP22~P23 ~Pl3d22 
(A.14g) 

"^22^33 +^33(^13 +^22 +Pll ~dU -^33) + V (2P\2 + d23JrP23) 

bX  = G2(P22+Pu-d22-d\0+2(P\2P33+d23P33+d12P22-Pl3P23) 

+ 2(dl2pn + dl3p23-pl2d22-pl2pl3-p23d33-dup23-pl2d33+pnp23) 

b0 = -^23-ö??3+(C?ll-^ll)(öf33+^22-/733-/,22)-ö??2-/??2-c?22/'33     . 4 (A.14i) 
~ P22d33+P22P33 + ^22^33 ~ ^23 + 2(^13^13 + d2iP23 + d\7P\l) ~ P\3 

and the coefficients of the 9th order polynomial mQ(T) are 

c9 = a6/ 8640 (A. 15a) 

c8 = a4(jp33-^33)/960 (A. 15b) 

C7 = ^^4P23 - <^2P33d33 + ^23) (A.15C) 

c6 = 4s<S4(P22-d22) + T2a*(j,u~du)+ X2Ö<5l(<P^d23-P23d33) (A.15d) 

1 2 
C5 = j2a2(d\2a2-P33dl3-Pl3d33+Pl2a2)-J5a2(P33d22+P22d33) 

7 1 
+ 2ÖP^d23a2 + 20^22^33 + ^22rf33°2-P23CT2^23a2) 

5 2 2 
°4 = Y2a2^13^23~^23Ö?13 + C?12'P33--Pl2rf33^~3-P23^22Cj2 + 3;'22^23 + 

-a2^^^ + ^,3^3-^13/723-^,2^33) + j2a4(^ii-^ii) + (A.15f) 

7(^23 ^33-^22^33^33-^33^23 +^33^22^33) 

(A.15e) 
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C3 ~ P33dl3d23-Pl2P33d33-P23d23-P23dh-d12P33d33+P22d23P33 

+ ^dl2p23C
2 + ^Pl2d23^

2 -P22d22°2 + ^23^22^33 + P\3P23d33 

1 2 2 11 
+ 3^12^23c2 ~ 3^13rf22a2-3/?22^13°2 " ^Pn^-^wP 33^ 

+ ^2(PnP33-Pl3P22-d\3d22-dh-Pnd33 + dUd33 + d\2d23-P\3d\3) 

(A.15g) 

c2 = P23d22+ Pl3d 13 + Pl3d33-d13P33-P\3d23 
+ dl\P33d33+ Pl3d22d33~P\\P33d33+ dnP33d23-P\2P23d33-dl3P33d22 

+ 2o2(dnp22-pnd22)+p22(d22d33-d22p33-dl3p33-d2
l
3 +pl3d33)      (A.15h) 

+ G2(PuP23-d\\d23-duP23 + d\2d\3+P\\d23-P\2P\3-P\2d\3 + d\lP\l) 
-3dnp23d33 + 3d23(p23dl3-pup23+pl2p33) 

c, = 2(/722fi?13^23-^11^23jp33-p1243-43^23-^12p23_;?22/7i3C?23) 

+ 2(p13^13^23 ~p\3d23 +Pl2d23P23+Pl2d22d33 ~P\2d22P33 +PuP\3d33) 

+ °2(PuP22 + dud22 + 2d\2Pl2~ dnP22-Plld22- P22~ dh) (A.15i) 

+ 2(pud23p33 + dup23d33 + dnp23d23 + Pl3p23d22-pup23d33-pl2dl3p33) 

+ 2(pndl3p23-dup23d22 + dl2dl3p33 - dnp22d33 - dnpl3d33 + dnp22p33) 

c0 = {dl3+pl3){dn-pu) + {d2
3+p2

3){d22-p22) + {d2
2+p\2){d33-p33) 

+ 2p23(dl2dn-dud23-dnpl3-dl2pl3-dl2dl3-pl2dl3) 

+ 2dn(pl3d23-pl2d33+ pnd33+ pnp33-dl3d23+ pl3d23) (A.15j) 

+ 2(/?,2J13C?23 ~pl2Pl3d23 +PnPl3P23 + dl3P\3P22 + P\\d23P23-d\3P\3d22) 

-(dU-PU)(d22-P22^d33-P33) 

This model describes a white noise jerk model also called a Wiener process accelera- 

tion model. 

1.2 Direct Discretized Model 

In these models the only difference is in how the process noise covariance is 

approximated. 
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First Order: 

With the first order model we can solve for the optimal sample rate directly. The first 

order direct discretized model is 

MX(T) = du-a2pn-C2T2 

Letting M{ (T) = 0, the optimal sample period is T = 
du-a2pn 

1/2 
(A.16) 

, where the 

negative solution has been ignored. When dx x > a2pu then there will always exist a 

positive value for the sample period. 

Comparing this solution of the sample period to that found using the dis- 

cretized continuous model we see that the two sample periods are related by the square 

root. 

Second Order: 

The equation for this second order model is 

M2(T) = 
d\\ d\2 
dX2 d22 

- 1 T 
0 1_ 

Pn Pn 

P\2 P22_ 

1  0 

7 \ 
-a2 r4/4 r3/2 

r3/2  T2 
(A.17) 

The characteristic equation is a second order polynomial in the complex variable s 

f(s) = det(sI-M2(T)) = m2{T)s2 + mx{T)s + mQ(T) 

where the polynomial coefficients in Tare 

m2(T) = 1 

mx(T) = a4T
4 + a3T

3 + a2T
2 + axT + aQ 

mQ(T) = b4T
4 + b3T

3 + b2T
2 + bJ+b0 

(A.18) 

(A.19) 



The coefficients of the 4th order polynomial m, (T) are 
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H = P22+P\\-d22-d\\ 

a\  = 2Pl2 

a2 = P22 + °2 

«3  =  0 

1    2 
«4 =  4^ 

(A.20a) 

(A.20b) 

(A.20c) 

(A.20d) 

(A.20e) 

and the coefficients of the 4th order polynomial mQ(T) are 

b0 = dnd22-p
2

2-d2
2+2dnpl2-pud22-dup22 + pnp22 (A.21a) 

b\ = 2dl2p22-2pud22 (A.21b) 

b2 = c2(pu-dn)-p22d22 (A.21c) 

b3 = a2(dl2+pn) (A.21d) 

b4 = 4^(^22-^22) (A.21e) 

When the update covariance changes at each sample interval the coefficients of these 

polynomials must be recomputed. 

Third Order: 

The equation for this third order model is 

M3(D = 
dn dn du 1 T T2/2 

"12 "22 "23 - 0 1     T 

dn d23 d33_ 0 0     1  J 

Pu P12P13 1       0 0 

P\2 P22 Pl3 T     1 0 

P\3 P23 P33_ T2/2 T 1_ 

-a' 
T6/36 T5/12 T4/6 

T5/12 T4/4 T3/2 

T4/6 T3/2     T2 

(A.22) 
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The characteristic equation is a third order polynomial in s 

f(s) = det(sI-M3(T)) = m3(T)s3 + m2(T)s2 + mx{T)s + m0(T)       (A.23) 

m2(T) = 1 

 <8 m, 

mo\ 

a6 = c2/36 

a5 = 0 

a4 = (o2 + p32)/4 

(A.24) 
>dTy=HobiTi 

^ = 110^ 

The coefficients of 6th order polynomial m2(T) are 

(A.25a) 

(A.25b) 

(A.25c) 

a3 = P23 (A.25d) 

a2 = G2+Pi3 +P33+P22 (A.25e) 

<3j = 2p23 + 2pl2 (A.25f) 

a0 = Pi 1 + P22 + Px-d\\-d22-di2, (A.25g) 

the coefficients of the 8th order polynomial m j (T) are 

h = JZ4P33C2 (A-26a) 

bi = JzP23°2 (A-26b> 

b6 = C\gP33 + 9P22 + i2P 13 " 36^22 ~ ^33J (A26c) 

b5 = °2\jP23+ \P\2 + ldn) (A.26d) 
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bA = - 4^22^33 + 4P33°2 + 3dU°2 + ^Pu^ ~ ^33^33 " 4^23 

"4^33
CT2

 
+ 4^22^33 +/?22a2 + 4-P11 <^2 ~ 4^11 <^2 

b3  = ~ P23d22+ P23c2 + d23°2 + Pl2P33 

-^23^33 + dnP33 --P 13^23 + 2Pl2°2 

(A.26e) 

(A.26f) 

*2 " °2(/'ll+/'22"</22-^ll)+^12/,23 "^13^22 +/>33 0>22 ~ ^33 )   ' 
(A.26g) 

-p22d22~P23 + d\3P33 + ^>d\lP23- Pu + P\\P33 ~P22d33~P\3d33 ~P\3P22 

bl = 2d23p33-2pl2d22-2pl3p23 + 2pup23 + 2dl3p23-2dnp23 
j      oj ~ , (A.26h) 

- 2/>23d33 + 2«12^22 + 2^12^33 " 2JPi2/>i3 ~ 2^i2«33 + 2^i2^13 

b0 = 2dl2pl2-d
2

3-dup33-p2
3-p2

2-pud33-d2
2 + dnd33-pnd22 

+ 2dnp13 + d22d33 - d22p33 -p22d33 + p22p33 - d\3 + 2d23p23 -p\3     (A.26i) 

- dnp22+ pup33 + dnd22 + pnp22 

and the coefficients of the 8th order polynomial m0(T) are 

c8 = -i44c2^33^33 (A.27a) 

1 ,2< 

(A.27c) 

C7 =  ^2(P33d23~P23d33) (A.27b) 

7 1 
C6 = °2 Jg^S^I + °236(^22^33 + ^22^33 " ^23~P|j) 

"a212^13^33 +JP33rf13)-°29^22^33 +^33^22) 

:5  = a2(kg/'l2/'33 ~ 3^23^22 + ^13^23 ~ ^12^33 ~ 2^23^13j 

+ c2\^-dl2p33 + ^p22d23 + ^dl3d23 - ^pnd33 - ^pl3p23) 

(A.27d) 
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19 2 1 
c4 =  3^12/,23Cy2-3/713cf22CT2-3^22^13CT2-^22^22a2-2^13fl?13a2 

+ ^2(d33(du-pn)-d2
3-dnp33-p2

3) 

+ -ASP23d33~p33d23+ ^33^33(^22-^22)) 

(A.27e) 

4 

c3 = -P23d23-P23d23+Pnd23<*2-d\2P33d33+d12Pl3c2+P22d23P33 

-PnP33d33 -2pnd22a
2 - dnd23c

2 + p33dl3d23 + 2dnp22a
2 + p]3p23d33 (A.27f) 

+ i?ll/?23CT2-^12fl?13Cj2 + ^12^13a2-^12^13a2+-P23ö?22^33-^11^23o2 

C2 = P2\3d33 ~P\3d23 -^22^23 ~P\2P23d33 + 3P\2d23P33 + $P23d13d23 

-pud22a
2-p2

2c
2+pup22c

2 + dlld22ü
2-dnp22a

2-d2
2a

2-dl3p33d22 

- 3dl2p23d33 + dnp33d23 +phd22~d23P33 +P23d\3 + 2dl2pl2G2      (A.27g) 

+ ^22^22^33 -P22d22P33 + P\3d22d33+ P\3P22d33 ~ ^P\3d23P23 ~P22d\3P33 

-pnp33d33 + dnp33d33 

c\  = - 2P\2d22P33 + 2P\3dl3P23-2PnP23d33-2dl2Pl3d33-2P\3d23 

+ 2pud23p33 + 2dnp22p33 + 2Pudl3d23-2p22pud23 + 2dndl3p33 

+ 2p22dl3d23 + 2dl2p23d23 + 2dup23d33 + 2pnd23p23 + 2px2pX3d33    (A.27h) 

- 2^12^13^33 - 2d\\d23P33 ~ 2d2
3P23 ~

2dnP22d33 + 2Pl3P23d22 

+ 2px2d22d33 - 2dX2p\3 - 2px2d2
3 - 2dX3p23d22 

CQ = ~ P\\P23- P\\d23+ Phd33~ dnP33+ dhd33- PnP33~ P23P22 

+ p2
3d22-2dud23p23-2dl2dl3d23 + 2dndx3p23 + 2dx2px3d23-2dx2pX3p23 

+ 2(dnpl2p33-dl2pl2d33+pl2dl3d23-pl2dup23) 
(A.27i) 

+ 2(PnP\3P23 + dl3P\3P22-d\3P\3d22-Pl2P\3d23+ Pud23P23^ 

-d\\P22P33 + d\ld23 +PllP22P33 + d\\P22d33 ~P\\P22d33^^22 

-P\\^22^33 + ^11 ^22^33 + d\ 1^23 + d\ 1 rf22^33 ~ d\ 1 ^22^33 + d\3^22 
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Appendix B 

Lie Groups 

The definition and properties of Lie groups are found in [23]. A matrix group 

G, is a set of nonsingular matrices that are closed under (matrix) multiplication and 

inversion and always contain the identity matrix. This says that if S and T are both ele- 

ments of G, then S'1, T1,1, ST and TS are also elements of G. Unitary matrices are 

one example of a Lie group. Unitary matrices are described by the set 

U(N) = {U*U = I, U e CNxN} where C denotes the domain of complex numbers. 

Defining U, V e U(N), the Lie group properties are verified as follows 

(I)*(I) = I (B.l) 

(UV)*(UV) = V*U*UV = V*(I)V = I (B.2) 

(U-i)*(U-i) = uu* = I (B.3) 

2.1 Symplectic Matrices 

Symplectic matrices form a Lie group. Symplectic matrices are described by 

the set S(2N) = {STJS =J,Se <R2Nx2Ny where J = 0 I 
-10 

(J-l   = _J = JT). 

Defining S, T e 5(2 JV) , the three properties of a Lie group are verified as follows 

(I)TJ(I) = J (B.4) 

(ST)TJ(ST) = TT(STJS)T = TTJT = J (B.5) 

(S"1)TJ(S-1) = (S"1)TSTJS(S-1) = J (B.6) 
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Now let M e S(2N) and M A B 

C D 
where A, B, C, D e W**. Substi- 

tuting this matrix into the definition we get 

A B 
C D 

0  I 

-I 0 

A B 

CD 
ATC-(ATC)T    ATD-CTB 

_-(ATD - CTB)T BTD - (BTD)T_ 

0 I 

-I 0 
(B.7) 

Equating subblocks in (B.7), we have three conditions that must be satisfied 

ATD-CTB = I 

ATC-(ATC)T = 0 

BTD-(BTD)T = 0 

Symplectic matrices are always invertible because 

(B.8) 

det(M) = det(M)2det(J) = det(MTJM) = det(J) = 1 (B.9) 

where det(M) = X1A,71(X2A,2,)...(A,ArX,^1) = 1, because the eigenvalues come in 

reciprocal pairs. We can also manipulate the definition as follows 

MTJM = J 

MJ"1(MTJM = ^M-'J"1 

MJ^M1 = J1 

MJMT = J 

(B.10) 

Using the last equation in (B.10) and doing the same computation as in (B.7) we have 

A B 
C D 

0  I 
-I 0 

A B 
C D 

T 
ABT-(ABT)T     ADT-BCT 

-(ADT-BCT)T CDT-(CDT)T 

0  I 
-I 0 

(B.ll) 

Equating subblocks in (B.l 1), we have three more conditions that must also be satis- 
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fied 

ADT-BCT = I 

ABT-(ABT)T = 0 (B.12) 

CDT-(CDT)T = 0 

From the connection imposed by (B. 10) it is apparent that the equations in (B.8) imply 

the equations in (B.12). 

It is easy to show that the eigenvalues of a symplectic matrix come in recipro- 

cal pairs: We can write M = J-1M""TJ and using this in the eigenvalue formula we 

have 

Mv = Xv 

J-!MTJv = Xv 

M"T(Jv) = A.(Jv) (B.13) 

MT(Jv) = X'HJv) 

MT« = X~xu 

where u = Jv. This means that X~l is an eigenvalue of MT with eigenvector u and 

since A,(M) = X(MT) then Ar1 must also be an eigenvalue of M. 

Using the definition of a symplectic matrix we can express the inverse as 

M~' = J_1 MT J. Then expressing M in terms of subblocks we have 

M -l = 0 I 
-I 0 

-1 
A B 
C D 

T 
0 I 
-10 

= DT -BT 

_-CT AT_ 
(B.14) 

Because products of symplectic matrices are also symplectic and inverses of symplec- 

tic matrices are also symplectic, a natural question to ask is whether there exists an 

eigendecomposition of a symplectic matrix M, i.e. M - TDT-1, such that D and T 

are also symplectic. If we can find such a D and T, this would simplify the computa- 

tion of T_1 because we can use the representation given in (B.14). 
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2.1.1Three subgroups of the symplectic group 

The following are each subgroups of the symplectic group. 

Si(2N) = 

S2(2N) = 

S3(2N) = 

I 0 
R I 

IQ 
p I 

)R = RTe^xiV 

,Q = QTe<R"*" 

A"1   0 

0   AT 
, det(A) * 0 

(B.15a) 

(B.15b) 

(B.15c) 

This can be written as S, (27V) c S(2N), S2(2N) c S(2N), and S3(2N) c S(2N). 

Any products of these subgroups is also symplectic. One solution of the DMRE 

changes üieNxN nonlinear matrix difference equation into a 27V x 27V linear matrix 

difference equation with state transition matrix 

M = I       0 A"1   0 IQ 
CTlHC I 0   AT 0 I 

(B.16) 

where M is symplectic. 
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Appendix C 

List of Acronyms 

CCD - Charge Coupled Device 

CDMA - Code Division Multiple Access 

DMRE - Discrete Matrix Riccati Equation 

DPRE - Discrete Periodic Riccati Equation 

DSP - Digital Signal Processor 

ESA - Electronically Scanned Array (Electronically Steered Antenna, Phased Array) 

FDMA - Frequency Division Multiple Access 

GPS - Global Positioning System 

RADAR - RAdio Detection And Ranging 

RCS - RADAR Cross Section 

SONAR - SOund Navigation And Ranging 

SVD - Singular Value Decomposition 

TDMA - Time Division Multiple Access 


